Jpn. J. Appl. Phys. 32 (1993) pp. 6065-6070  |Next Article|  |Table of Contents|
|Full Text PDF (2289K)| |Buy This Article|

Correlation of Nano Edge Roughness in Resist Patterns with Base Polymers

Toshiyuki Yoshimura, Hiroshi Shiraishi, Jiro Yamamoto and Shinji Okazaki

Central Research Laboratory, Hitacti, Ltd., Kokubunji, Tokyo 185

(Received July 17, 1993; accepted for publication August 21, 1993)

The origin of ultra small edge roughness in delineated resist patterns (nano edge roughness) is investigated from the viewpoint of molecular structures of the base polymers of the resists. In this article, conventional two-component negative-type electron beam resists are studied to clarify the correlation of the nano edge roughness with base polymers. The base polymers are cresol novolak and polyvinylphenol mixed with the same concentrations of photoactive azide compound. The weight-average molecular weight (Mw) and polydispersity (Mw/Mn) of the base resins are controlled. Nanometer feature microscopic surface characteristics obtained with an atomic force microscope (AFM) show that the cresol novolak-based resist exhibits a rougher surface than the polyvinylphenol-based one. Nano edge roughness can be suppressed by using base resins with lower Mw and Mw/Mn, suggesting that nano edge roughness reflects the molecular characteristics of the base polymers. There is nanometer level swelling in resist patterns (nano swelling) in polyvinylphenol-based resist. These results suggest that the structures of the base polymers and the interaction with developers affect the nano edge roughness.

URL: http://jjap.jsap.jp/link?JJAP/32/6065/
DOI: 10.1143/JJAP.32.6065
KEYWORDS:nanofabrication, nano edge roughness, surface roughness, polymer, cresol novolak, polyvinylphenol, electron beam resist, atomic force microscope, weight-average molecular weight (Mw), polydispersiry (Mw/Mn), nano swelling


|Full Text PDF (2289K)| |Buy This Article| Citation:


References | Citing Articles (48)

  1. K. Sagara, T. Kure, S. Shukuri, J. Yugami, N. Hasegawa, H. Shinriki, H. Goto, H. Yamashita and E. Takeda: Dig. Tech. Pap. Symp. VLSI Technology (Business Center for Academic Societies Japan, Tokyo, 1992) p. 10.
  2. G. A. Sai-Halasz, M. R. Wordeman, D. P. Kern, E. Ganin, S. Rishton, H. Y. Ng, D. S. Zicherman, D. Moy, T. H. P. Chang and R. H. Dennard: IEDM Tech. Dig. (The Institute of Electrical and Electronic Engineers, Piscataway, New Jersey, 1987) p. 397.
  3. M. Koyanagi, H. Kurino, H. Hashimoto, Y. Sudo and S. Yokoyama: IEDM Tech. Dig. (The Institute of Electrical and Electronic Engineers, Piscataway, New Jersey, 1992) p. 1019.
  4. T. A. Fulton and G. J. Dolan: Phys. Rev. Lett. 59 (1987) 109[APS].
  5. K. K. Likharev: IEEE Trans. Magn. 23 (1987) 1142.
  6. H. Matsuoka, T. Ichiguchi, T. Yoshimura and E. Takeda: IEDM Tech. Dig. (The Institute of Electrical and Electronic Engineers, Piscataway, New Jersey, 1992) p. 781.
  7. T. Yoshimura, Y. Nakayama and S. Okazaki: J. Vac. Sci. Technol. B10 (1992) 2615.
  8. E. W. Scheckler, S. Shukuri and E. Takeda: Jpn. J. Appl. Phys. 32 (1993) 327[JSAP].
  9. E. W. Scheckler, T. Ogawa, T. Yoshimura, S. Shukuri and E. Takeda: Dig. Tech. Pap. Symp. VLSI Technology (Business Center for Academic Societies Japan, Tokyo, 1993) p. 149.
  10. T. Yoshimura, H. Shiraishi, J. Yamamoto and S. Okazaki: Appl. Phys. Lett. 63 (1993) 764[AIP Scitation].
  11. H. Ito and C. G. Wilson: Polym. Eng. Sci. 23 (1982) 1012.
  12. E. Meyer, L. Howald, R. M. Overney, H. Heinzelmann, J. Frommer, H.-J. Güntherodt, T. Wagner, H. Schier and S. Roth: Nature 349 (1991) 398.
  13. A. L. Weisenhorn, M. Egger, F. Ohnesorge, S. A. C. Gould, S.-P, Heyn, H. G. Hansma, R. L. Sinsheimer, H. E. Gaub and P. K. Hansma: Langmuir 7 (1991) 8.
  14. H. G. Hansma, S. A. C. Gould, P. K. Hansma, H. E. Gaub, M. L. Longo and J. A. N. Zasadzinski: Langmuir 7 (1991) 1051.
  15. T. Iwayanagi, T. Kohashi, S. Nonogaki, T. Matsuzawa, K. Douta and H. Yanazawa: IEEE Trans. Electron Devices ED-28 (1981) 1306.
  16. R. F. W. Pease: J. Vac. Sci. Technol. B10 (1992) 278.
  17. A. Moniwa and S. Okazaki: Jpn. J. Appl. Phys. 30 (1991) 3093[JSAP].
  18. S. Imamura: J. Electrochem. Soc. 126 (1979) 1628.
  19. E. Aoki, H. Shiraishi and F. Murai: J. Photopolymer Sci. Technol. 1 (1988) 128.
  20. T. Thundat, R. J. Warmack, D. P. Allison, L. A. Bottomley, A. J. Lourenco and T. L. Ferrell: J. Vac. Sci. Technol. A10 (1992) 630.
  21. N. J. L. Megson: Phenolic Resin Chemistry (Butterworths, London, 1958) Chap. 8.
  22. H. Shiraishi, N. Hayashi, T. Ueno, O. Suga, F. Murai and S. Nonogaki: American Chemical Society Symp. Ser. 346 (1987) 77.
  23. Y. Taniguchi, Y. Hatano, H. Shiraishi, S. Horigome, S. Nonogaki and K. Naraoka: Jpn. J. Appl. Phys. 18 (1979) 1143[JSAP].
  24. P. J. Flory: Principles of Polymer Chemistry (Cornell University Press, Ithaca, New York, 1953) Chap. 10.
  25. J. P. Huang, T. K. Kwei and A. Reiser: Macromolecules 22 (1989) 4106.
  26. R. A. Arcus: Proc. SPIE 631 (1986) 124[AIP Scitation].
  27. M. K. Templeton, C. R. Szmanda and A. Zampini: Proc. SPIE 771 (1987) 136[AIP Scitation].
  28. M. Hanabata, Y. Uetani and A. Furuta: Proc. SPIE 920 (1988) 349[AIP Scitation].
  29. T. Hattori, T. Ueno, H. Shiraishi, N. Hayashi and T. Iwayanagi: Jpn. J. Appl. Phys. 30 (1991) 3125[JSAP].

|TOP|  |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information