Jpn. J. Appl. Phys. 36 (1997) pp. 6237-6243  |Next Article|  |Table of Contents|
|Full Text PDF (1022K)| |Buy This Article|

Optical Constants of ZnO

Hisashi Yoshikawa and Sadao Adachi

Department of Electronic Engineering, Faculty of Engineering, Gunma University, Kiryu, Gunma 376, Japan

(Received June 16, 1997; accepted for publication July 16, 1997)

The complex dielectric functions, ε(E)=ε1(E)+ iε2(E), of ZnO have been measured by spectroscopic ellipsometry (SE) in the photon-energy range between 1.5 and 5.0 eV at room temperature. The SE measurements are carried out on the surface parallel to the optic axis c, which allows the determination of the optical constants for light polarized perpendicular (Ec) and parallel to the c -axis (E//c). The measured SE spectra show the exciton peaks at ∼3.4 eV (E0 edge). These ε(E) spectra are analyzed on the basis of a simplified model of the interband transitions. Excellent agreement is achieved between the calculated and experimental results over the entire range of photon energies. Dielectric-function-related optical constants, such as the complex refractive index n*(E)=n(E)+ ik(E), absorption coefficient α(E) and normal-incidence reflectivity R(E), of ZnO have also been reported.

DOI: 10.1143/JJAP.36.6237
KEYWORDS:ZnO, optical constant, dielectric function, refractive index, optical absorption, spectroscopic ellipsometry

|Full Text PDF (1022K)| |Buy This Article| Citation:

References | Citing Articles (180)

  1. Numerical Data and Functional Relationships in Science and Technology, eds. K.-H. Hellwege and O. Madelung (Springer, Berlin, 1982) Landolt-Bnstein, New Series, Group III, Vol. 17, Pt. a.
  2. J. A. Aranovich, D. Golmayo, A. L. Fahrenbruch and R. H. Bube: J. Appl. Phys. 51 (1980) 4260[AIP Scitation].
  3. S. Pizzini, N. Butta, D. Narducci and M. Palladino: J. Electrochem. Soc. 136 (1989) 1945.
  4. F. S. Hickernell: Proc. IEEE 64 (1976) 631.
  5. T. Shiosaki, N. Kitamura and A. Kawabata: Proc. IEEE Ultrasonics Symp. (1991) p. 296.
  6. E. Mollwo: Z. Angew. Phys. 6 (1954) 257.
  7. W. L. Bond: J. Appl. Phys. 36 (1965) 1674[AIP Scitation].
  8. E. C. Heltemes and H. L. Swinney: J. Appl. Phys. 38 (1967) 2387[AIP Scitation].
  9. Y. S. Park, C. W. Litton, T. C. Collins and D. C. Reynolds: Phys. Rev. 143 (1966) 512[APS].
  10. W. Y. Liang and A. D. Yoffe: Phys. Rev. Lett. 20 (1968) 59[APS].
  11. Y. S. Park and J. R. Schneider: J. Appl. Phys. 39 (1968) 3049[AIP Scitation].
  12. R. L. Hengehold, R. J. Almassy and F. L. Pedrotti: Phys. Rev. B 1 (1970) 4784[APS].
  13. R. Klucker, H. Neelkowski, Y. S. Park, M. Skibowski and T. S. Wagner: Phys. Status Solidi B 45 (1971) 265.
  14. J. L. Freeouf: Phys. Rev. B 7 (1973) 3810[APS].
  15. K. Hmer: Phys. Status Solidi B 56 (1973) 249[CrossRef].
  16. K. Hümmer and P. Gebhardt: Phys. Status Solidi B 85 (1978) 271[CrossRef].
  17. R. Matz and H. Lh: Appl. Phys. 18 (1979) 123.
  18. E. F. Venger, A. V. Melnichuk, L. Yu. Melnichuk and Yu. A. Pasechnik: Phys. Status Solidi B 188 (1995) 823[CrossRef].
  19. S. Zollner, M. Garriga, J. Humlek, S. Gopalan and M. Cardona: Phys. Rev. B 43 (1991) 4349[APS].
  20. U. Rossow: Optical Characterization of Epitaxial Semiconductor Layers, eds. G. Bauer and W. Richter (Springer-Verlag, Berlin, 1996) p. 68.
  21. F. Meyer, E. E. de Kluizenaar and D. den Engelsen: J. Opt. Soc. Am. 63 (1973) 529.
  22. D. E. Aspnes, J. C. Phillips, K. L. Tai and P. M. Bridenbaugh: Phys. Rev. B 23 (1981) 816[APS].
  23. S. Logothetidis, L. Viña and M. Cardona: Phys. Rev. B 31 (1985) 2180[APS].
  24. S. Logothetidis, P. Lautenschlager and M. Cardona: Phys. Rev. B 33 (1986) 1110[APS].
  25. S. Logothetidis, M. Cardona, P. Lautenschlager and M. Garriga: Phys. Rev. B 34 (1986) 2458[APS].
  26. S. Ninomiya and S. Adachi: J. Appl. Phys. 78 (1995) 4681[AIP Scitation].
  27. S. Logothetidis and H. M. Polatoglou: Phys. Rev. B 36 (1987) 7491[APS].
  28. A. K. Harman, S. Ninomiya and S. Adachi: J. Appl. Phys. 76 (1994) 8032[AIP Scitation].
  29. S. Ninomiya and S. Adachi: J. Appl. Phys. 78 (1995) 1183[AIP Scitation].
  30. The group-theoretical symbols used here are taken from G. F. Koster, J. O. Dimmock, R. G. Wheeler and H. Statz: Properties of Thirty-Two Point Groups (MIT Press, Cambridge, 1963).
  31. S. Adachi: GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties (World Scientific, Singapore, 1994).
  32. R. J. Elliott: Phys. Rev. 108 (1957) 1384[APS].
  33. R. M. A. Azzam and N. M. Bashara: Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  34. A. Mang, K. Reimann and St. Renacke: Solid State Commun. 94 (1995) 251[CrossRef].
  35. D. C. Reynolds and T. C. Collins: Excitons, Their Properties and Uses (Academic, New York, 1981).
  36. See, for instance, H. Haug and S. W. Koch: Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1993).
  37. D. G. Thomas and J. J. Hopfield: Phys. Rev. 116 (1959) 573[APS].
  38. J. J. Hopfield: J. Phys. Chem. Solids 15 (1960) 97[CrossRef].
  39. T. C. Damen, S. P. S. Porto and B. Tell: Phys. Rev. 142 (1966) 570[APS].

|TOP|  |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information