Jpn. J. Appl. Phys. 36 (1997) pp. 6449-6454  |Next Article|  |Table of Contents|
|Full Text PDF (2573K)| |Buy This Article|

Polymer-Stabilized Ferroelectric Liquid Crystal Devices with Grayscale Memory

Hideo Fujikake, Kuniharu Takizawa, Hiroshi Kikuchi, Takanori Fujii, Masahiro Kawakita and Tahito Aida

NHK Science & Technical Research Laboratories, 1-10-11 Kinuta, Setagaya-ku, Tokyo 157, Japan

(Received April 11, 1997; accepted for publication July 8, 1997)

A novel grayscale-memory ferroelectric liquid crystal device with polymer dispersion has been studied. The ferroelectric liquid crystal molecules are stabilized by a low-concentration doped polymer, which induces an enormous number of small liquid crystal domains with different threshold voltages for bistable switching. The polydomain has a spatial grayscale effect due to domain distribution. In forming the polymer-dispersion system with phase separation under ultraviolet light irradiation, a solution of liquid crystal and prepolymer was heated at the chiral nematic phase, and the directors of liquid crystal and prepolymer molecules were oriented parallel to the rubbing direction of alignment layers on substrates. A unique microscopic striped texture extending parallel to the rubbing direction was observed at a room temperature, and could be used to form the small domains. The 2-µ m-thick device, fabricated by addition of 4 wt% polymer and strong ultraviolet irradiation of 40 mW/cm2, exhibited excellent grayscale memory according to applied voltage pulses of a few V. It has much potential for use in high-resolution matrix panel displays.

DOI: 10.1143/JJAP.36.6449
KEYWORDS:ferroelectric liquid crystal, grayscale memory, polydomain, striped texture, phase separation, polymer dispersion

|Full Text PDF (2573K)| |Buy This Article| Citation:

References | Citing Articles (16)

  1. N. A. Clark and S. T. Lagerwall: Appl. Phys. Lett. 36 (1980) 899[AIP Scitation].
  2. Y. Hanyu, K. Nakamura, Y. Hotta, S. Yoshihara and J. Kanbe: SID Dig. (1993) p. 364.
  3. J. W. Doane, N. A. Vaz, B. G. Wu and S. Zumer: Appl. Phys. Lett. 48 (1986) 269[AIP Scitation].
  4. H. Molsen and H. S. Kitzerow: J. Appl. Phys. 75 (1994) 710[AIP Scitation].
  5. P. Patel, D. Chu, J. L. West and S. Kumar: SID Dig. (1994) p. 845.
  6. S. Kataoka, Y. Iimura, S. Kobayashi, H. Hasebe and Takatsu: SID Dig. (1996) p. 699.
  7. H. Fujikake, K. Takizawa, H. Kikuchi, T. Fujii and M. Kawakita: Ext. Abstr. 41st Spring Meet. Jpn. Society of Appl. Phys. 29p-P-15 (1994) p. 1120 [in Japanese].
  8. T. Fujisawa, H. Ogawa and K. Maruyama: IDRC. Dig. (1989) p. 690.
  9. E. Shimada and T. Uchida: Jpn. J. Appl. Phys. 31 (1992) L352[JSAP].
  10. A. Yasuda, Y. B. Yang, K. Nito and H. Takanashi: Eurodisplay FLC-2 (1993) p. 59.
  11. N. A. Vaz, G. W. Smith and G. P. Montgomery, Jr: Liq. Cryst. 146 (1987) 1.
  12. C. A. Guymon, E. N. Hoggan, D. M. Walbe, N. A. Clark and C. N. Bowman: Liq. Cryst. 19 (1995) 719.
  13. K. Lee, S.-W. Suh and S. D. Lee: Appl. Phys. Lett. 64 (1994) 718[AIP Scitation].
  14. H. S. Kitzerow and P. P. Crooke: J. Phys. II 3 (1993) 719.
  15. R. A. M. Hikmet, H. M. J. Boots and M. Michelsen: Liq. Cryst. 19 (1995) 65.

|TOP|  |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information