Jpn. J. Appl. Phys. 37 (1998) pp. 5016-5020  |Next Article|  |Table of Contents|
|Full Text PDF (817K)| |Buy This Article|

A Dark Discharge Model of Earthquake Lightning

Shunji Takaki and Motoji Ikeya

Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan

(Received May 19, 1998; accepted for publication June 16, 1998)

A model of dark discharge in the atmosphere before a large earthquake was proposed to elucidate the mechanism of generation of earthquake lightning and related electroatmospheric phenomena. Change in seismic stress releases piezo-compensating, bound charges due to changes in the piezoelectric polarization of quartz grains in granitic rocks, which produces an intense electric field at the fault zone. The excited or ionized molecules by free electrons accelerated under the electric field produce luminous phenomena in the atmosphere. Both Maxwell and Druyvesteyn distributions of the electron energy under the induced electric field were considered to estimate the rate of ionization and excitation of N2 and O2 molecules. An electric field and spatial distribution of earthquake lightning (EQL) were calculated based on the induced charges in the piezoelectric process which accompanies an earthquake. The intensity of emission from the excitation state, B3Πg of N2 molecule was estimated at 3×1020 photons/m3 close to the fault zone. A nucleus of precipitation might also be formed in a supercooled atmosphere leading to the appearance of earthquake fog and clouds.

DOI: 10.1143/JJAP.37.5016
KEYWORDS:EQL, lightning, earthquake, model, discharge, piezoelectricity, polarization, cloud

|Full Text PDF (817K)| |Buy This Article| Citation:

References | Citing Articles (5)

  1. Y. Yasui: Mem. Kakioka Magn. Obs. 13 (1968) 25.
  2. K. Wadatsumi: Zenchou Shogen 1519 (1519 Witnessed Phenomena Prior to Earthquake) (Tokyo Pub., Tokyo, 1995) [in Japanese].
  3. M. Ikeya: Jishin no Mae, Naze Dobutsu ha Sawagunoka (Why Do Animals Behave Unusually before an Earthquake) (NHK Press, Tokyo, 1998) [in Japanese].
  4. H. Tributsch: When the Snakes Awake (MIT Press, Boston, 1982).
  5. B. T. Brady and G. A. Roswell: Nature 321 (1986) 488[CrossRef].
  6. A. C. Johnston: Nature 354 (1991) 361.
  7. T. Terada: Bull. Earthquake Res. Inst., Univ. Tokyo 9 (1931) 225.
  8. H. Mizutani, T. Ishido, T. Yokokura and S. Ohnishi: Geophys. Res. Lett. 3 (1976) 365.
  9. D. Finkelstein, R. D. Hill and J. R. Powell: J. Geophys. Res. 78 (1973) 992.
  10. A. A. Radzig and B. M. Smirnov: Reference Data on Atoms, Molecules, and Ions (Springer-Verlag, Berlin, 1985).
  11. A. von Engel: Ionized Gases (Oxford University Press, Oxford, 1955).
  12. Y. P. Raizer: Gas Discharge Physics (Springer-Verlag, Berlin, 1991).
  13. S. Takeda: Kitai Hoden no Kiso (Basis of Gas Discharge) (Tokyo Electrical Machinery University Press , Tokyo, 1990) [in Japanese].
  14. M. Ikeya and S. Takaki: Jpn. J. Appl. Phys. 35 (1996) L355[JSAP].
  15. J. N. Brune: J. Geophys. Res. 75 (1970) 4997.
  16. M. Ikeya, H. Sasaoka, K. Teramoto and C. Huang: Ionics 23 (1997) Suppl. 2, p. 3.
  17. G. Herzberg: Spectra of Diatomic Molecules (Van Nostrand Reinhold, New York, 1950) 2nd ed.

|TOP|  |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information