Jpn. J. Appl. Phys. 39 (2000) pp. 3924-3929  |Next Article|  |Table of Contents|
|Full Text PDF (271K)| |Buy This Article|

A New, Low-Thermal-Budget Planarization Scheme for Pre-Metal Dielectric Using Electron-Beam Cured Hydrogen Silsesquioxane in Device

Hae-Jeong Lee, Juseon Goo, Seong-Ho Kim, Jin-Gi Hong, Hyeon-Deok Lee, Ho-Kyu Kang, Sang-In Lee and Moon Yong Lee

Semiconductor R&D Center, Samsung Electronics Co., Ltd., San #24, Nongseo-Lee, Ki heung-Eup, Yongin City, Kyungki-Do, 449-900, Korea

(Received September 30, 1999; accepted for publication March 6, 2000)

Employing an electron-beam (E-beam) cured hydrogen silsesquioxane (HSQ) based inorganic spin-on-glass as a pre-metal dielectric (PMD) material, we developed a simple planarization process with low thermal budget and good planarity in stacked capacitor dynamic random access memory (STC DRAM) device. We observe the basic E-beam cured HSQ film characteristics such as Fourier-transform infrared absorption spectra (FTIR), wet etch rate, film shrinkage, refractive index (RI), X-ray photoelectron spectroscopy (XPS), and electron spin resonance spectroscopy (ESR) in non-patterned wafer. No degradation of device characteristics such as Vth change, hot carrier hardness, and gate oxide quality has been observed. This process resulted in lower leakage current and higher capacitance for Ta2O5 capacitor as well as better planarization performance compared with the conventional undoped silicate glass (USG) etch back process. These results show that E-beam curing process as a low thermal budget PMD scheme would be a promising process for high capacitor dielectric materials.

DOI: 10.1143/JJAP.39.3924
KEYWORDS:low thermal budget, electron-beam curing, hydrogen silsesquioxane, pre-metal dielectric material, planarization, capacitance, transistor characteristics, hot-carrier hardness, gate oxide quality

|Full Text PDF (271K)| |Buy This Article| Citation:

References | Citing Articles (4)

  1. T. Aoyama, S. Saida, Y. Okayama, M. Fujisaki, K. Imai and T. Arikado: J. Electrochem. Soc. 143 (1996) 977.
  2. F. C. Chiu, J. J. Wang, J. Y. Lee and S. C. Wu: J. Appl. Phys. 81 (1997) 6911[AIP Scitation].
  3. R. J. Cava and J. J. Krajewski: J. Appl. Phys. 83 (1998) 1613[AIP Scitation].
  4. H. J. Lee, J. H. Choi, B. K. Hwang, J. S. Goo, K. Fujihara, U. I. Chung, K. H. Kim, S. I. Lee and M. Y. Lee: Proc. VLSI Technology Symp. (1996) p. 112.
  5. J. J. Yang, D. K. Choi, L. Forester, M. Ross and S. Q. Wang: Proc. 3rd Int. Dielectrics for ULSI Multilevel Interconnection Conf. (DUMIC) (1997) p. 397.
  6. P. A. Agaskar, V. W. Day and W. G. Klemperer: J. Am. Chem. Soc. 109 (1987) 5554.
  7. G. Lucovsky, M. J. Manitini, J. K. Srivastava and E. A. Irene: J. Vac. Sci. Technol. B 5 (1987) 530[AIP Scitation].
  8. D. Seyferth, C. Prud'homme and G. H. Wiseman: Inorg. Chem. 22 (1983) 2163.
  9. V. Belot, R. Corriu, D. Leclercq, P. H. Mutin and A. Vioux: Chem. Mater. 3 (1991) 127.
  10. M. Grant Albrecht and Craig Blanchette: J. Electrochem. Soc. 145 (1998) 4019.
  11. A. Hozumi, H. Sekoguchi and O. Takai: J. Electochem. Soc. 144 (1997) 2824.
  12. P. G. Pai, S. S. Chao, Y. Takagi and G. Lucovski: J. Vac. Sci. Technol. A 4 (1986) 689[AIP Scitation].
  13. E. Ritter: Opt. Acta 9 (1962) 197.
  14. J. R. Shallenberger: J. Vac. Sci. Technol. A 14 (1996) 693[AIP Scitation].
  15. J. F. Conley, Jr.: Mater. Res. Soc. Symp. Proc. 428 (1996) 293.
  16. A. Stesmans and V. V. Afanas'ev: Appl. Phys. Lett. 69 (1996) 2056[AIP Scitation].
  17. H. Kudo, R. Shinohara, S. Takeishi, N. Awaji and M. Yamada: Jpn. J. Appl. Phys. 35 (1996) 1583[JSAP].
  18. A. Stesmans: Mater. Sci. Forum 239–241 (1997) 1.

|TOP|  |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information