Jpn. J. Appl. Phys. 42 (2003) pp. 981-988  |Next Article|  |Table of Contents|
|Full Text PDF (324K)| |Buy This Article|

Light Delivery Techniques for Heat-Assisted Magnetic Recording

William A. Challener, Terry W. McDaniel1, Christophe D. Mihalcea, Keith R. Mountfield, Kalman Pelhos and Ibrahim K. Sendur

Seagate Research, 1251 Waterfront Place, Pittsburgh, Pennsylvania 15222, U.S.A.
1Seagate Research, 47050 Kato Road, Fremont, California 94538, U.S.A.

(Received August 9, 2002; accepted for publication September 28, 2002)

Heat-assisted magnetic recording (HAMR), also known as hybrid recording, has been proposed to enable storage densities greater than 1 Tb/in2 in hard disc drives while circumventing the superparamagnetic limit. Light is delivered in the near field to the recording medium to heat just the spot which is to be recorded. Techniques based on apertures, antennas, waveguides, and solid immersion lenses have been suggested for delivering substantial amounts of optical power into subwavelength spots in the near field. A practical transducer for HAMR may require a combination of techniques.

DOI: 10.1143/JJAP.42.981
KEYWORDS:magnetic recording, hybrid recording, thermomagnetic recording, near field, solid immersion lens, surface plasmon, bow tie antenna, superparamagnetic limit

|Full Text PDF (324K)| |Buy This Article| Citation:

References | Citing Articles (38)

  1. P. L. Lu and S. H. Charap: J. Appl. Phys. 75 (1994) 5768[AIP Scitation].
  2. D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J. U. Thiele and M. F. Doerner: IEEE Trans. Magn. 36 (2000) 10.
  3. T. W. McDaniel and W. A. Challener: MORIS 2002, Brittany, France, 2002.
  4. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder and C.-H. Chang: Appl. Phys. Lett. 61 (1992) 142[AIP Scitation].
  5. S. M. Mansfield and G. S. Kino: Appl. Phys. Lett. 57 (1990) 2615[AIP Scitation].
  6. B. D. Terris, H. J. Mamin and D. Rugar: Appl. Phys. Lett. 68 (1996) 141[AIP Scitation].
  7. Q. Wu, G. D. Feke, R. D. Grober and L. P. Ghislain: Appl. Phys. Lett. 75 (1999) 4064[AIP Scitation].
  8. Handbook of Optical Constants of Solids, ed. E. D. Palik (Academic Press, New York, 1998).
  9. T. Mizuno, T. Hitosugi, N. Kojima, S. Yamazaki, K. Sako and K. Watanabe: Proc. SPIE 4342 (2002) 260[AIP Scitation].
  10. T. Ishimoto, K. Saito, T. Kondo, A. Nakaoki and M. Yamamoto: Proc. SPIE 4342 (2002) 294[AIP Scitation].
  11. S. Tang, T. D. Milster, J. K. Erwin and W. L. Bletscher: Opt. Lett. 26 (2001) 1987.
  12. J. Kim and T. D. Milster: Proc. SPIE 4342 (2002) 447[AIP Scitation].
  13. H. A. Bethe: Phys. Rev. 66 (1944) 163[APS].
  14. C. J. Bouwkamp: Philips Res. Rep. 5 (1950) 321.
  15. Y. Leviatan: J. Appl. Phys. 60 (1986) 1577[AIP Scitation].
  16. J. D. Jackson: Classical Electrodynamics (John Wiley & Sons, Inc., New York, 1975) 2nd ed., p. 413.
  17. R. Wannemacher: Opt. Commun. 195 (2001) 107[CrossRef].
  18. All FDTD calculations in this report are performed with XFDTD which is a registered trademark of Remcom Inc.
  19. T. Kalkbrenner, M. Ramstein, J. Mlynek and V. Sandoghdar: J. Microsc. 202 (2000) 72.
  20. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen and H. J. Lezec: Phys. Rev. B 58 (1998) 6779[APS].
  21. T. Thio, H. J. Lezec and T. W. Ebbesen: Physica B 279 (2000) 90[CrossRef].
  22. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec and T. W. Ebbesen: Opt. Lett. 26 (2001) 1972.
  23. H. Raether: Physics of Thin Films (Academic Press, New York, 1977) Vol. 9, p. 145.
  24. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin and T. Thio: Appl. Phys. Lett. 77 (2000) 1569[AIP Scitation].
  25. L. Salomon, F. Grillot, A. V. Zayats and F. de Fornel: Phys. Rev. Lett. 86 (2001) 1110[APS].
  26. E. Kretschmann: Z. Phys. 227 (1969) 412.
  27. A. Otto: Z. Phys. 216 (1968) 398.
  28. M. Ohtsu and H. Hori: Near-field Nano-optics (Kluwer Academic, New York, 1999) p. 128.
  29. C. Mihalcea, W. Scholz, S. Werner, S. Münster, E. Oestershulze and R. Kassing: Appl. Phys. Lett. 68 (1996) 3531[AIP Scitation].
  30. P. N. Minh, T. Ono, S. Tanaka and M. Esashi: Appl. Opt. 40 (2001) 2479.
  31. E. Oesterschulze, G. Georgiev, M. Müller-Wiegand, A. Vollkopf and O. Rudow: J. Microsc. 202 (2000) 39.
  32. B. J. Kim, J. W. Flamma, E. S. Ten Have, M. F. Garcia-Parajo, N. F. Van Hulst and J. Brugger: J. Microsc. 202 (2001) 16.
  33. J. Brugger: private communication.
  34. T. Yatsui, K. Itsumi, M. Kourogi and M. Ohtsu: Appl. Phys. Lett. 80 (2002) 2257[AIP Scitation].
  35. All FE calculations in this report are performed with Ansoft HFSS which is a registered trademark of Ansoft Corp.
  36. R. D. Grober, R. J. Schoelkopf and D. E. Prober: Appl. Phys. Lett. 70 (1997) 1354[AIP Scitation].
  37. X. Shi, R. L. Thornton and L. Hesselink: Proc. SPIE 4342 (2002) 320[AIP Scitation].
  38. T. E. Schlesinger, T. Rausch, A. Itagi, J. Zhu, J. A. Bain and D. D. Stancil: Jpn. J. Appl. Phys. 41 (2002) 1821[JSAP].
  39. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto and T. Kobayashi: Opt. Lett. 22 (1997) 475.
  40. R. Coehoorn, S. R. Cumpson, J. J. M. Ruigrok, P. Hidding, F. Zijp, A. H. J. Immink and H. P. Urbach: Proc. NATO-ASI on Rhodes, Greece, 2000.
  41. J. J. Burke, G. I. Stegeman and T. Tamir: Phys. Rev. B 33 (1986) 5186[APS].
  42. T. Rausch, J. A. Bain, D. D. Stancil and T. E. Schlesinger: Proc. SPIE 4090 (2000) 66[AIP Scitation].
  43. A. Itagi, T. E. Schlesinger and D. Stancil: ISOM/ODS, WP.3 (2002).
  44. A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester and J. H.-J. Yeh: Appl. Phys. Lett. 75 (1999) 1515[AIP Scitation].
  45. Y. C. Martin, H. F. Hamann and H. K. Wickramasinghe: J. Appl. Phys. 89 (2001) 5774[AIP Scitation].

|TOP|  |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information