Jpn. J. Appl. Phys. 43 (2004) pp. 407-417  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (352K)| |Buy This Article|

Finitte-Difference Time-Domain Studies on Optical Transmission through Planar Nano-Apertures in a Metal Film

Eric X. Jin and Xianfan Xu

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA

(Received April 18, 2003; revised July 22, 2003; accepted October 8, 2003; published January 13, 2004)

The finite-difference time-domain (FDTD) method is employed to numerically study the transmission characteristics of an H-shaped nano-aperture in a metal film in the optical frequency range. It is demonstrated that the fundamental TE10 mode concentrated in the gap between the two ridges of the H-shaped aperture provides a high transmission efficiency above unity and the size of the gap determines the sub-wavelength resolution. Fabry–Perot-like resonance is observed. Localized surface plasmon (LSP) is excited on the edges of the aperture in a silver film but has a negative effect on the signal contrast and field concentration, while aluminum acts similar to an ideal conductor if the film thickness is several times larger than the finite skin depth. In addition, it is shown that two other ridged apertures, C-shaped and bowtie-shaped apertures, can also be used to achieve a sub-wavelength resolution in the near field with a transmission efficiency above unity and a high contrast.

URL: http://jjap.jsap.jp/link?JJAP/43/407/
DOI: 10.1143/JJAP.43.407
KEYWORDS:nano-aperture, ridged aperture, scanning near field optical microscopy (SNOM), finite-difference time-domain (FDTD) method, high transmission efficiency


|Full Text PDF (352K)| |Buy This Article| Citation:


References | Citing Articles (46)

  1. E. H. Synge: Philos. Mag. 6 (1928) 356.
  2. H. A. Bethe: Phys. Rev. 66 (1944) 163[APS].
  3. C. J. Bouwkamp: Philips Res. Rep. 5 (1950) 321.
  4. Y. Leviatan: J. Appl. Phys. 60 (1986) 1577[AIP Scitation].
  5. A. Roberts: J. Appl. Phys. 65 (1989) 2896[AIP Scitation].
  6. K. Tanaka, T. Ohkubo, M. Oumi, Y. Mitsuoka, K. Nakajima, H. Hosaka and K. Itao: Jpn. J. Appl. Phys. 40 (2001) 1542[JSAP].
  7. X. Shi and L. Hesselink: Jpn. J. Appl. Phys. 41 (2002) 1632[JSAP].
  8. K. Tanaka, T. Ohkubo, M. Oumi, Y. Mitsuoka, K. Nakajima, H. Hosaka and K. Itao: Jpn. J. Appl. Phys. 41 (2002) 1628[JSAP].
  9. K. Sendur and W. Challener: J. Microscopy 210 (2003) 279.
  10. K. Tanaka and M. Tanaka: J. Microscopy 210 (2003) 294.
  11. K. S. Yee: IEEE Trans. Antennas Propagation 14 (1966) 302.
  12. K. Kunz and R. Luebbers: The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, 1996) p. 11, p. 123.
  13. J. Liu, B. Xu and T. C. Chong: Jpn. J. Appl. Phys. 39 (2000) 687[JSAP].
  14. E. Vasilyeva and A. Taflove: IEEE Antennas and Propagation Society, AP-S International Symposium (IEEE, Piscataway, NJ, 1998) p. 1800.
  15. O. J. F. Martin: J. Microscopy 194 (1999) 235.
  16. M. Spajer, G. Parent, C. Bainier and D. Charraut: J. Microscopy 202 (2001) 45.
  17. J. T. Krug, E. J. Sanchez and X. S. Xie: J. Chem. Phys. 116 (2002) 10895[AIP Scitation].
  18. H. Nakamura, T. Sato, H. Kambe, K. Sawada and T.Saiki: J. Microscopy 202 (2001) 50.
  19. P. N. Minh, T. Ono, S. Tanaka and M. Esashi: J. Microscopy 202 (2001) 28.
  20. T. D. Milster, F. Akhavan, M. Bailey, J. K. Erwin and D. M. Felix: Jpn. J. Appl. Phys. 40 (2001) 1778[JSAP].
  21. S. Tang and T. D. Milster: Jpn. J. Appl. Phys. 42 (2003) 1090[JSAP].
  22. T. E. Schlesinger, T. Rausch, A. Itagi, J. Zhu, J. A. Bain and D. D. Stancil: Jpn. J. Appl. Phys. 41 (2002) 1821[JSAP].
  23. W. A. Challener, T. W. Mcdaniel, C. D. Mihalcea, K. R. Mountfield, K. Pelhos and I. K. Sendur: Jpn. J. Appl. Phys. 42 (2003) 981[JSAP].
  24. Z. P. Liao, H. L. Wong, G. P. Yang and Y. F. Yuan: Scientia Sinica 28 (1984) 1063.
  25. Remcom Inc.: XFDTD 5.3 software (2002).
  26. D. R. Lide: CRC Handbook of Chemistry and Physics (CRC Press, Roca Raton, 1996) 77th ed., Sect. 12, p. 12.
  27. E. D. Palik: Handbook of Optical Constants of Solids (Academic, Orlando, 1985) Vol. 1, p. 350.
  28. S. Ramo, J. R. Whinnery and T. V. Duzer: Fields and Waves in Communication Electronics (John Wiley & Sons, 1994) p. 396, p. 589.
  29. J. Helszajn: Ridge waveguides and passive microwave components (IEE, London, 2000) p. 26.
  30. S. Astilean, Ph. Lalanne and M. Palamaru: Opt. Commun. 175 (2000) 265[CrossRef].
  31. Y. Takakura: Phys. Rev. Lett. 86 (2001) 5601[APS].
  32. C. L. Tan, Y. X. Yi and G. P. Wang: Acta Phys. Sinica 51 (2002) 1063.
  33. H. Raether: Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988) p. 4.
  34. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff: Nature 391 (1998) 667[CrossRef].
  35. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen and H. J. Lezec: Phys. Rev. B 58 (1998) 6779[APS].

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information