Jpn. J. Appl. Phys. 43 (2004) pp. 4471-4476  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (221K)| |Buy This Article|

Scanning Probes of Nonlinear Properties in Complex Materials

Rui Shao and Dawn A. Bonnell

Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, USA

(Received February 9, 2004; accepted March 8, 2004; published July 29, 2004)

Nonlinear materials have found wide applications in electronic devices. Of special importance and interest are those with varistor-type grain boundaries and those displaying large piezoelectric and electrostrictive responses to external fields. To access the local properties of these materials, we have designed two new contact mode scanning probe techniques. The first technique referred to as nanoimpedance microscopy/spectroscopy, which incorporates impedance spectroscopy with a conducting AFM tip as an electrode, has been demonstrated on measuring local grain boundary properties of a ZnO varistor, as well as the contact quality between AFM tip and a ferroelectric sample. The other technique referred to as second harmonic piezoresponse force microscopy developed to measure the electrosctriction has been demonstrated on ferroelectric polymer thin film. A theoretical model has been presented to describe the contrast formation of the second harmonic as well as the first harmonic (piezoresponse) images and to explain the observed hysteretic field dependence of the second harmonic amplitude signal.

URL: http://jjap.jsap.jp/link?JJAP/43/4471/
DOI: 10.1143/JJAP.43.4471
KEYWORDS:scanning probe, complex materials, nonlinearity, grain boundary, impedance spectroscopy, ferroelectric, electrostriction, second harmonic


|Full Text PDF (221K)| |Buy This Article| Citation:


References | Citing Articles (4)

  1. L. L. Hench and J. K. West: Principles of Electronic Ceramics, eds. L. L. Hench and J. K. West (John Wiley & Sons Inc., 1990) Chap. 4., p. 136.
  2. T. K. Gupta: J. Mater. Res. 7 (1992) 3280.
  3. J. R. Macdonald and W. B. Johnson: Impedance Spectroscopy: Emphasizing Solid Materials and Systems, ed. J. R. Macdonald (John Wiley & Sons Inc., 1987) Chap. 2, p. 27.
  4. B.-S. Hong, S. J. Ford and T. O. Mason: Key Eng. Mater. 125–126 (1997) 163.
  5. T. Tran, D. R. Oliver, D. J. Thomson and G. E. Bridges: Rev. Sci. Instrum. 72 (2001) 2618[AIP Scitation].
  6. P. De Wolf P, J. Snauwaert, L. Hellemans, T. Clarysse, W. Vandervorst, M. D'Olieslaeger and D. Quaeyhaegens: J. Vac. Sci. & Technol. A 13 (1995) 1699[AIP Scitation].
  7. S. V. Kalinin and D. A. Bonnell: Phys. Rev. B 65 (2002) 125408[APS].
  8. B. T. Rosner, T. Bork, Vivek Agrawal and D. W. van der Weide: Sens. & Actuat. A 102 (2002) 185.
  9. B. A. Strukov and A. P. Levanyuk: Ferroelectric Phenomena in Crystals: Physical Foundations, eds. B. A. Strukov and A. P. Levanyuk (Springer-Verlag Heidelberg, 1998), Chap. 5, p. 110.
  10. R. E. Newnham, V. Sundar, R. Yimnirun, J. Su and Q. M. Zhang: J. Phys. Chem. B 101 (1997) 10141[CrossRef].
  11. A. Gruverman, O. Kolosov, J. Hatano, K. Takahashi and H. Tokumoto: J. Vac. Sci. & Technol. B 13 (1995) 1095[AIP Scitation].
  12. L. M. Eng, H. J. Gütherodt, G. A. Schneider, U. Kopke and J. Munoz Saldana: Appl. Phys. Lett. 74 (1999) 233[AIP Scitation].
  13. C. Durkan and M. E. Welland: Ultramicroscopy 82 (2000) 141.
  14. Q. M. Zhang, W. Y. Pan and L. E. Cross: J. Appl. Phys. 63 (1988) 2492[AIP Scitation].
  15. I. L. Guy and Z. Zheng: Ferroelectr. 264 (2001) 1691.
  16. T. Furukawa and N. Seo: Jpn. J. Appl. Phys. 29 (1990) 675[JSAP].

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information