Jpn. J. Appl. Phys. 43 (2004) pp. 5609-5613  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (1206K)| |Buy This Article|

Cooling of Microspot by Microdroplets

Fu-Chu Chou, Shih-Chin Gong1, Cheng-Ru Chung, Ming-Wen Wang2 and Chi-Yuan Chang

Department of Mechanical Engineering, National Central University, Jhong-Li 320, Taiwan
1Intelligent Sensor Systems Division, Asia Pacific Microsystems, Inc., No. 2, R&D Rd. VI, Science-Based Industrial Park, Hsinchu 300, Taiwan
2Department of Mechanical Engineering, Oriental Institute of Technology, Pan-Chiao, Taipei Hsien 220, Taiwan

(Received January 6, 2004; accepted April 27, 2004; published August 10, 2004)

In this work, we explored a novel technique using microdroplets to cool hot microspots in advanced microelectronic devices. A hot floating membrane 150 µm ×150 µm is used both as a hot microspot and a thermal microsensor in the experiment. Microdroplet of pure water is ejected from the inkjet head onto the hot microspot. The evaporation time of a microdroplet decreased with increasing microspot temperature, and the temperature decrease due to microdroplet cooling increased with increasing microspot temperature. The microspot temperature can be maintained constant without flooding with cooling liquid when microdroplets are ejected continuously at an optimal frequency.

URL: http://jjap.jsap.jp/link?JJAP/43/5609/
DOI: 10.1143/JJAP.43.5609
KEYWORDS:cooling technique, microspots, microdroplets


|Full Text PDF (1206K)| |Buy This Article| Citation:


References | Citing Articles (2)

  1. Q. Kim, B. Stark and S. Kayali: Proc. IEEE 36th Annu. Int. Reliability Physics Symp., Reno, Nevada, 1998, p. 108
  2. C. Herzum, C. Boit, J. Kolzer, J. Otto and R. Weiland: Microelectron. J. 29 (1998) 163.
  3. P. Kolodner and J. Tyson: Appl. Phys. Lett. 42 (1983) 117[AIP Scitation].
  4. A. Pacelli, P. Palestri and M. Mastrapasqua: IEEE Trans. Electron Devices 49 (2002) 1027[CrossRef].
  5. H. Brugger and P. W. Epperlein: Appl. Phys. Lett. 56 (1990) 1049[AIP Scitation].
  6. C. L. Tien and G. Chen: ASME J. Heat Transfer 116 (1994) 799.
  7. J. E. Sergent and A. Krum: Thermal Management Handbook for Electronic Assemblies (McGraw-Hill, New York 1998) Chap. II.
  8. E. R. Hnatek: Practical Reliability of Electronic Equipment and Products (Marcel Dekker, Inc. New York 2003) Chap. V.
  9. R. Remsburg: Thermal Design of Electronic Equipment (CRC Press, New York 2001) Chap. IV.
  10. N. Beratlis and M. K. Smith: IEEE 19th SEMI-THERM Symp., San Jose, CA, 2003, p. 66.
  11. C. E. Bash, C. D. Patel and R. K. Sharma: Proc. IPACK03 Int. Electronic Packaging Tech. Conf. & Exhib., Maui, Hawaii, USA, 2003, p. 119.
  12. A. M. Worthington: Proc. R. Soc. Lond. 25 (1877) 261.
  13. S. D. Aziz and S. Chandra: Int. J. Heat Mass Transfer 43 (2000) 2841.
  14. J. Lee, J. Kim and K. T. Kiger: Int. J. Heat Fluid Flow 22 (2001) 188.
  15. S. Schiaffino and A. A. Sonin: Phys. Fluids 9 (1997) 3172[AIP Scitation].
  16. R. Nayve, M. Fujii, A. Fukugawa and M. Murata: Proc. IEEE 16th Annu. Int. Conf. MEMS, Kyoto, Japan, 2003, p. 461.
  17. S. Kamisuki, M. Fujii, T. Takekoshi, C. Tezuka and M. Atobe: Proc. IEEE 13th Annu. Int. Conf. MEMS, Miyazaki, Japan, 2000, p. 793.
  18. A. Koide, Y. Sasaki, Y. Yoshimura, R. Miyake and T. Terayama: Proc. IEEE 13th Annu. Int. Conf. MEMS, Miyazaki, Japan, 2000, p. 424.
  19. L. H. J. Wachters and N. A. J. Westerling: Chem. Eng. Sci. 21 (1966) 1047.
  20. J. S. Campbell, Jr., W. Z. Black, A. Glezer and J. G. Hartley: Proc. IEEE Inter Society Conf. Thermal Phenomena, Seattle, Washington, 1998, p. 43.

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information