Jpn. J. Appl. Phys. 43 (2004) pp. 6112-6124  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (1034K)| |Buy This Article|

Ultra-Small GaAs-Photonic-Crystal-Slab-Waveguide-Based Near-Infrared Components: Fabrication, Guided-Mode Identification, and Estimation of Low-Loss and Broad-Band-Width in Straight-Waveguides, 60°-Bends and Y-Splitters

Kuon Inoue, Yoshimasa Sugimoto1, Naoki Ikeda1, Yu Tanaka1, Kiyoshi Asakawa1, Taishi Maruyama, Kazuya Miyashita, Koji Ishida and Yoshinori Watanabe2

Chitose Institute of Science and Technology, Chitose, Hokkaido 066-8655, Japan
1The Femtosecond Technology Research Association, Tsukuba, Ibaraki 300-2635, Japan
2National Institute of Advanced Research Association, Tsukuba, Ibaraki 305-8568, Japan

(Received January 14, 2004; accepted May 20, 2004; published September 9, 2004)

We designed and fabricated ultra-small photonic-crystal (PC)-waveguide (WG)-based components of straight-WGs, 60°-bends and Y-splitters, utilizing single-line-defect in the air-bridge type GaAs PC, and revealed their optical properties in detail by observing a transmittance (T) spectrum over a broad wavelength-region from 850 to 1600 nm. For this purpose, we developed a halogen-lamp-based spectrometer for an ultra-thin slab-sample, which has turned out very useful. We also calculated the corresponding T-spectrum by using three-dimensional finite-difference-time-domain method. In all cases where comparison is possible, the observed spectrum agrees essentially with the calculated one. Owing to these broad spectra, we have unambiguously identified the high-T region due to single guided-mode in the respective components. Comparisons of the spectrum between different samples or components, such as the straight-WGs with much different lengths, or the straight-WG and the sharp bend have also helped to reasonably interpret the observed spectra, allowing a comprehensive understanding of optical properties of those components. The propagation loss and the band width in each component could also be estimated from the comparison. The loss is estimated as 1.5 ±0.5 dB/mm for the straight-WG, while less than 1 dB/bend, if it exists, for the bend WG, and both band-widths are broader than 40 nm. We also find that the Y-splitter is capable of dividing light into two ports almost equally in intensity with a total transmittance of more than 85%; the band-width is broader than 40 nm. As a result, we have found that all those should be useful as key components in future ultra-fast planar optical integrated circuits.

URL: http://jjap.jsap.jp/link?JJAP/43/6112/
DOI: 10.1143/JJAP.43.6112
KEYWORDS:photonic crystal, slab waveguide, air-bridge, FDTD simulation, propagation loss


|Full Text PDF (1034K)| |Buy This Article| Citation:


References | Citing Articles (13)

  1. E. Yablonovitch: Phys. Rev. Lett. 58 (1987) 2059[APS].
  2. A. S. John: Phys. Rev. Lett. 58 (1987) 2486[APS].
  3. A. Mekis, J. C. Chen, I. Kurand, S. Fan, P. R. Villeneuve and J. D. Joannopoulos: Phys. Rev. Lett. 77 (1996) 3787[APS].
  4. Mekis, S. Fan and J. D. Joannopoulos: Phys. Rev. B 58 (1998) 4809[APS].
  5. See for example, Y. Sugimoto, N. Ikeda, N. Carlsson, N. Kawai, K. Inoue and K. Asakawa: Proc. SPIE 4598 (2001) 58[AIP Scitation].
  6. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai and K. Inoue: IEEE J. Quantum Electron. 38 (2002) 760[CrossRef].
  7. S. G. Johnson, S. Fan, P. R. Villeneuve and J. D. Joannopoulos: Phys. Rev. B 60 (1999) 5751[APS].
  8. O. Painter, J. Vuckovic and A. Scherer: J. Opt. Soc. Am. B 16 (1999) 275.
  9. S. G. Johnson, P. R. Villeneuve, S. Fan and J. D. Joannopoulos: Phys. Rev. B 62 (2000) 8212[APS].
  10. S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou and H. A. Haus: J. Opt. Soc. Am. B 18 (2001) 162.
  11. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen and J. D. Joannopoulos: Proc. SPIE 4870 (2002) 289[AIP Scitation].
  12. S. Boscolo, M. Midrio and T. F. Krauss: Opt. Lett. 27 (2002) 1001.
  13. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis and J. D. Joannopoulos: Phys. Rev. E 66 (2002) 066608[APS].
  14. T. Baba, N. Fukaya and J. Yonekura: Electron. Lett. 35 (1999) 654[AIP Scitation].
  15. M. Loncar, T. Doll, J. Vuckovic and A. Scherer: J. Lightwave Technol. 18 (2000) 1402.
  16. S. Y. Lin, E. Chow, S. G. Johnson and J. D. Joannopoulos: Opt. Lett. 25 (2000) 1297.
  17. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi and I. Yokohama: Electron. Lett. 37 (2001) 293[AIP Scitation].
  18. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai and K. Inoue: Appl. Phys. Lett. 79 (2001) 4286[AIP Scitation].
  19. A. Talneau, L. Le. Gouezigou and N. Bouadma: Opt. Lett. 26 (2001) 1259.
  20. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi and I. Yokohama: Phys. Rev. Lett. 87 (2001) 253902[APS].
  21. M. Loncar, D. Nedeljkovic, T. P. Pearsall, J. Vuckovic, A. Scherer, S. Kuchinsky and D. C. Allen: Appl. Phys. Lett. 80 (2002) 1689[AIP Scitation].
  22. J. Arentoft, T. Sondergaard, M. Kristensen, A. Boltasseva, M. Throrhauge and L. Frandsen: Electron. Lett. 38 (2002) 274[AIP Scitation].
  23. M. Tokushima, H. Kosaka, T. Tomita and H. Yamada: Appl. Phys. Lett. 76 (2000) 952[AIP Scitation].
  24. E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson and J. D. Joannopoulos: Opt. Lett. 26 (2001) 286.
  25. S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qui, A. Karlsson, C. J. M. Smith, R. Houdré and U. Oesterle: Appl. Phys. Lett. 79 (2001) 2514[AIP Scitation].
  26. J. Moosburger, M. Kamp, A. Forchel, S. Oliver, H. Benisty, C. Weisbuch and U. Oesterle: Appl. Phys. Lett. 79 (2001) 3579[AIP Scitation].
  27. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai and K. Inoue: J. Appl. Phys. 91 (2002) 3477[AIP Scitation].
  28. A. Talneau, L. Le. Goiuezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis and M. Agio: Appl. Phys. Lett. 80 (2002) 547[AIP Scitation].
  29. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai and K. Inoue: Opt. Lett. 27 (2002) 388.
  30. S. Y. Lin, E. Chow, J. Bur, S. G. Johnson and J. D. Joannopoulos: Opt. Lett. 27 (2002) 1400.
  31. M. Tokushima and H. Yamada: Electron. Lett. 37 (2001) 1454[AIP Scitation].
  32. Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, K. Ishida and K. Watanabe: Appl. Phys. Lett. 83 (2003) 3236[AIP Scitation].
  33. M. Bayindir, B. Temelkuran and E. Ozbay: Phys. Rev. B 61 (2000) R11855[APS].
  34. S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa and H. Ishikawa: Phys. Rev. B 65 (2002) 165208[APS].
  35. S. Nishikawa, S. Lan, N. Ikeda, Y. Sugimoto, H. Ishikawa and K. Asakawa: Opt. Lett. 27 (2002) 2079.
  36. Y. Sugimoto, S. Lan, S. Nishikawa, N. Ikeda, H. Ishikawa and K. Asakawa: Appl. Phys. Lett. 81 (2002) 1946[AIP Scitation].
  37. A. Talneau, Ph. Lalanne, M. Agio and C. M. Soukoulis: Opt. Lett. 27 (2002) 1522.
  38. S. Noda, A. Chutinan and M. Imada: Nature (London) 407 (2000) 608[CrossRef].
  39. J. D. Joannopoulos, R. D. Meade and J. N. Winn: Photonic Crystals (Princeton University Press, Princeton, 1995).
  40. N. Kawai, K. Inoue, N. Ikeda, N. Carlsson, Y. Sugimoto and K. Asakawa: Phys. Rev. B 63 (2001) 153313[APS].
  41. K. Inoue, Y. Sugimoto and K. Asakawa: Abst. 4th Intl. Workshop on Photonic and Electromagnetic Crystal Structures (PECS-IV) ed. S. Yu. Lin (UCLA, Los-Angels, 2002) p. 18.
  42. K. Inoue, Y. Sugimoto, N. Ikeda, Y. Tanaka, K. Asakawa, H. Sasaki and K. Ishida: Jpn. J. Appl. Phys. 43 (2004) L446[JSAP].
  43. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai and K. Inoue: J. Appl. Phys. 91 (2002) 922[AIP Scitation].
  44. N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa and T. Takemori: Phys. Rev. Lett. 86 (2001) 2289[APS].
  45. A. Chutinan, M. Okamoto and S. Noda: Appl. Phys. Lett. 80 (2002) 1698[AIP Scitation].
  46. S. Kuchinsky, D. C. Allen, N. F. Borrelli and J. C. Cotteveterte: Opt. Commun. 175 (2000) 147[CrossRef].
  47. Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, K. Inoue and S. G. Johnson: Electron. Lett. 40 (2004) 174[AIP Scitation].

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information