Jpn. J. Appl. Phys. 44 (2005) pp. 1581-1584  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF: FREE (352K)|

Selected Topics in Applied Physics

New Advances in Carbon Nanotube:
From New Growth Processes to Nanodevices

Position-Controlled Growth of Single-Walled Carbon Nanotubes by Laser-Irradiated Chemical Vapor Deposition

Yasuyuki Fujiwara1,2, Kenzo Maehashi1,2, Yasuhide Ohno1,2, Koichi Inoue1,2 and Kazuhiko Matsumoto1,2

1The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
2Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, 4-1-8 Honmachi, Kawaguchi, Saitama 332-0012, Japan

(Received October 15, 2004; accepted December 9, 2004; published April 8, 2005)

Single-walled carbon nanotubes (SWNTs) were synthesized by chemical vapor deposition using Ar-ion laser irradiation as a source of heat. The circular area corresponding to the position of the laser spot in the growing process was characterized by Raman scattering spectroscopy and scanning electron microscopy. The results revealed that SWNTs can be synthesized at exactly controlled positions and localized regions. The regions of SWNT growth strongly depended on the power of the laser; therefore, only suitable power from laser irradiation could synthesize SWNTs over an entire circular area. By making a partial improvement to the apparatus, the optical instrument and the laser power, we finally synthesized SWNTs in an extremely localized area of approximately 5 µm in diameter.

URL: http://jjap.jsap.jp/link?JJAP/44/1581/
DOI: 10.1143/JJAP.44.1581
KEYWORDS:single-walled carbon nanotubes, laser-irradiated chemical vapor deposition, position control, local synthesis, Raman spectroscopy, scanning electron microscopy


|Full Text PDF: FREE (352K)|  Citation:


References | Citing Articles (24)

  1. M. S. Dresselhaus, G. Dresselhaus and P. C. Eklund: Science of Fullerenes and Carbon Nanotubes (Academic Press, New York, 1996).
  2. T. Zhao and Y. Liu: Carbon 42 (2004) 2765.
  3. D. Nishide, H. Kataura, S. Suzuki, S. Okubo and Y. Achiba: Chem. Phys. Lett. 392 (2004) 309[CrossRef].
  4. J.-F. Colomer, C. Stephan, S. Lefrant, G. Van Tendeloo, I. Willems, Z. Konya, A. Fonseca, Ch. Laurent and J. B. Nagy: Chem. Phys. Lett. 317 (2000) 83[CrossRef].
  5. K. Matsumoto, S. Kinoshita, Y. Gotoh, K. Kurachi, T. Kamimura, M. Maeda, K. Sakamoto, M. Kuwahara, N. Atoda and Y. Awano: Jpn. J. Appl. Phys. 42 (2003) 2415[JSAP].
  6. T. Okazaki and H. Shinohara: Chem. Phys. Lett. 376 (2003) 606[CrossRef].
  7. S. Chiashi, Y. Murakami, Y. Miyauchi and S. Maruyama: Chem. Phys. Lett. 386 (2004) 89[CrossRef].
  8. K. Maehashi, Y. Ohno, K. Inoue and K. Matsumoto: Appl. Phys. Lett. 85 (2004) 858[AIP Scitation].

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information