Jpn. J. Appl. Phys. 44 (2005) pp. L620-L622  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (141K)| |Buy This Article|

Express Letter

Single-Photon Generation in the 1.55-µm Optical-Fiber Band from an InAs/InP Quantum Dot

Toshiyuki Miyazawa1,, Kazuya Takemoto2, Yoshiki Sakuma3, Shinichi Hirose2, Tatsuya Usuki2, Naoki Yokoyama2, Motomu Takatsu1 and Yasuhiko Arakawa1,4,5

1Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
2Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0197, Japan
3National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
4Nanoelectronics Collaborative Research Center, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
5Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

(Received March 25, 2005; accepted April 16, 2005; published May 2, 2005)

We first succeeded in generating single-photon pulses in the C-band (1.55-µm band: the highest transmittance in optical telecommunication bands) from a single InAs/InP quantum dot. The quantum dot with 1546.1-nm exciton emission was prepared by controlling the growth conditions. A well-designed mesa structure presented efficient injection of the emitted photons into a single-mode optical fiber. A Hanbury-Brown and Twiss measurement has proved that the photons through the fiber were single photons. We also performed to transmit single-photon pulses through 30-km optical fiber. This preliminary trial is a milestone toward quantum telecommunication using ideal single photons.

DOI: 10.1143/JJAP.44.L620
KEYWORDS:InAs/InP, single quantum dots, single-photon pulses, C-band

|Full Text PDF (141K)| |Buy This Article| Citation:

References | Citing Articles (50)

  1. E. Waks, C. Santori and Y. Yamamoto: Phys. Rev. A 66 (2002) 042315[APS].
  2. C. Brunel, B. Lounis, P. Tamarat and M. Orrit: Phys. Rev. Lett. 83 (1999) 2722[APS].
  3. C. Kurtsiefer, S. Mayer, P. Zarda and H. Weinfurter: Phys. Rev. Lett. 85 (2000) 290[APS].
  4. S. Strauf, P. Michler, M. Klude, D. Hommel, G. Bacher and A. Forchel: Phys. Rev. Lett. 89 (2002) 177403[APS].
  5. M. H. Baier, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert-Philip and I. Abram: Appl. Phys. Lett. 84 (2004) 648[AIP Scitation].
  6. J. Hours, S. Varoutsis, M. Gallart, J. Bloch, I. Robert-Philip, A. Cavanna, I. Abram, F. Laruelle and J. M. Gérard: Appl. Phys. Lett. 82 (2003) 2206[AIP Scitation].
  7. V. Zwiller, T. Aichele, W. Seifert, J. Persson and O. Benson: Appl. Phys. Lett. 82 (2003) 1509[AIP Scitation].
  8. C. Santori, D. Fattal, J. Vučković, G. S. Solomon and Y. Yamamoto: Nature 419 (2002) 594[CrossRef].
  9. J. Kim, O. Benson, H. Kan and Y. Yamamoto: Nature 397 (1999) 500[CrossRef].
  10. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie and M. Pepper: Science 295 (2002) 102[Science].
  11. P. Michler, A. Imamoǧlu, M. D. Mason, P. J. Carson, G. F. Strouse and S. K. Buratto: Nature 406 (2000) 968[CrossRef].
  12. K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, T. Miyazawa, M. Takatsu and Y. Arakawa: Jpn. J. Appl. Phys. 43 (2004) L993[JSAP].
  13. K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki and N. Yokoyama: Jpn. J. Appl. Phys. 43 (2004) L349[JSAP].
  14. We utilized the QDs at the lower energy side of macro-PL spectrum from the QD ensemble. Thinning the first cap to 1 nm might lead to a significant reduction of the density of QDs emitting at 1.55 µm, because the majority of QDs emitted at shorter wavelength. As a result, an intense and isolated exciton line has been clearly observed at 1.55 µm.
  15. R. Hanbury Brown and R. Q. Twiss: Nature 178 (1956) 1447[CrossRef].
  16. G. Ribordy, J. D. Gautier, H. Zbinden and N. Gisin: Appl. Opt. 37 (1998) 2272.

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information