Jpn. J. Appl. Phys. 45 (2006) pp. 2018-2021  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (191K)| |Buy This Article|

Reduced Humidity Effects on Probe Nano-Oxidation Investigated Using Dynamic Force Microscope

Hiromi Kuramochi1,2, Kazunori Ando1,2, Takashi Tokizaki1,3 and Hiroshi Yokoyama1,3

1Research Consortium for Synthetic Nano-Function Materials Project (SYNAF), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
2SII NanoTechnology, 36-1 Takenoshita, Oyama-cho, Sunto-gun, Shizuoka 410-1393, Japan
3Nanotechnology Research Institute (NRI), AIST, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan

(Received July 4, 2005; accepted October 14, 2005; published online March 27, 2006)

Humidity effects on nano-oxidation are investigated using a dynamic force microscope in the humidity range of 30–60%. Oxide size and detected faradaic current increased with relative humidity and applied voltage. The aspect ratios of fabricated oxides at various humidities are approximately of the same magnitude. Scanning probe microscope nano-oxidation in the dynamic mode is less subject to the relative humidity than that in the contact mode.

DOI: 10.1143/JJAP.45.2018
KEYWORDS:nano-oxidation, dynamic force microscope, faradaic current, relative humidity

|Full Text PDF (191K)| |Buy This Article| Citation:

References | Citing Articles (2)

  1. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek and J. Benett: Appl. Phys. Lett. 56 (1990) 2001[AIP Scitation].
  2. E. S. Snow and P. M. Cambell: Appl. Phys. Lett. 64 (1994) 1932[AIP Scitation].
  3. H. Sugimura and N. Nakagiri: Jpn. J. Appl. Phys. 34 (1995) 3406[JSAP].
  4. Ph. Avouris, T. Hartel and R. Martel: Appl. Phys. Lett. 71 (1997) 285[AIP Scitation].
  5. Ph. Avouris, R. Martel, T. Hartel and R. Sandstrom: Appl. Phys. A 66 (1998) S659[CrossRef].
  6. K. Morimoto, F. Pérez-Murano and J. A. Dagata: Appl. Surf. Sci. 158 (2000) 205[CrossRef].
  7. H. Kuramochi, K. Ando and H. Yokoyama: Surf. Sci. 542 (2003) 56[CrossRef].
  8. H. Kuramochi, F. Perez-Murano, J. A. Dagata and H. Yokoyama: Nanotechnology 15 (2004) 297[IoP STACKS].
  9. P. A. Fontaine, E. Dubois and D. Stievenard: J. Appl. Phys. 84 (1998) 1776[AIP Scitation].
  10. H. Kuramochi, K. Ando, T. Tokizaki and H. Yokoyama: Appl. Phys. Lett. 84 (2004) 4005[AIP Scitation].
  11. R. Garcia, M. Calleja and H. Rohrer: J. Appl. Phys. 86 (1999) 1898[AIP Scitation].
  12. M. Calleja, M. Tello and R. Garcia: J. Appl. Phys. 92 (2002) 5539[AIP Scitation].
  13. H. Dai, N. Franklin and J. Han: Appl. Phys. Lett. 73 (1998) 1508[AIP Scitation].
  14. H. Kuramochi, K. Ando, T. Tokizaki and H. Yokoyama: Nanotechnology 15 (2004) 1126[IoP STACKS].
  15. H. Kuramochi, K. Ando, T. Tokizaki, M. Yasutake, F. Pérez-Murano, J. A. Dagata and H. Yokoyama: Surf. Sci. 566–568 (2004) 343[CrossRef].
  16. J. A. Dagata, T. Inoue, J. Itoh and H. Yokoyama: Appl. Phys. Lett. 73 (1998) 271[AIP Scitation].
  17. T. Stifter, O. Marti and B. Bhushan: Phys. Rev. B 62 (2000) 13667[APS].
  18. F. Perez-Murano, C. Martin, N. Barniol, H. Kuramochi, H. Yokoyama and J. A. Dagata: Appl. Phys. Lett. 82 (2003) 3086[AIP Scitation].

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information