Jpn. J. Appl. Phys. 46 (2007) pp. 175-181  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (430K)| |Buy This Article|

Multimode-Interference-Coupled Ring Resonators Based on Total-Internal-Reflection Mirrors

Doo Gun Kim, Young Wan Choi, Jong Chang Yi1, Youngchul Chung2, Cem Ozturk3, and Nadir Dagli4

School of Electronic and Electrical Engineering, Chung-Ang University, 221 Heuksuk-dong, Dongjak-gu, Seoul 156-756, Korea
1School of Electronics and Electrical Engineering, Hong Ik University, 72-1 Sangsu-dong, Mapo-gu, Seoul 121-79, Korea
2Department of Electronics and Communications Engineering, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 139-701, Korea
3Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, Istanbul 34956, Turkey
4Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93160, U.S.A.

(Received July 12, 2006; accepted September 23, 2006; published online January 10, 2007)

We investigate the properties of a multimode-interference (MMI) coupled ring cavity resonator with total-internal-reflection (TIR) mirrors and a semiconductor optical amplifier (SOA) in an InGaAsP material system. The TIR mirrors were fabricated by the self-aligned process with a loss of about 1.4 dB per mirror. The resulting free spectral range (FSR) was approximately 0.8 nm (97 GHz) near 1569 nm. The on–off ratio and the full width at half maximum (FWHM) were 8 dB and 0.152 nm, respectively, corresponding to a finesse of 5.2 and a Q factor of 10,322. Hence, such resonators can be directly integrated with other devices making possible the fabrication of compact and highly functional photonic integrated circuits.

URL: http://jjap.jsap.jp/link?JJAP/46/175/
DOI: 10.1143/JJAP.46.175
KEYWORDS:multimode-interference coupler, total-internal-reflection mirror, semiconductor optical amplifier, band-stop filter, microring resonator


|Full Text PDF (430K)| |Buy This Article| Citation:


References | Citing Articles (5)

  1. S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun: IEEE Photonics Technol. Lett. 11 (1999) 691[CrossRef].
  2. K. Sasayama, F. Fruh, T. Kominato, and K. Habara: IEICE Trans. Commun. E78-B (1995) 674.
  3. W. Weiershausen and R. Zengerle: Appl. Opt. 35 (1996) 5967.
  4. B. E. Little, S. T. Chu, W. Pan, D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen: IEEE Photonics Technol. Lett. 11 (1999) 215[CrossRef].
  5. M. Cai, G. Hunziker, and K. Vahala: IEEE Photonics Technol. Lett. 11 (1999) 686[CrossRef].
  6. J.-P. Laine, B. E. Little, and H. A. Haus: IEEE Photonics Technol. Lett. 11 (1999) 1429[CrossRef].
  7. R. Grover, T. A. Ibrahim, T. N. Ding, Y. Leng, L. C. Kuo, S. Kanakaraju, K. Amarnath, L. C. Calhoun, and P. T. Ho: IEEE Photonics Technol. Lett. 15 (2003) 1082[CrossRef].
  8. S. J. Choi, K. Djordjev, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly: IEEE Photonics Technol. Lett. 16 (2004) 828[CrossRef].
  9. C. Ozturk, Y. J. Chiu, and N. Dagli: IEEE/LEOS Annu. Meet., 2002, p. ThN-2.
  10. D. G. Rabus, M. Hamacher, U. Troppenz, and H. Heidrich: IEEE Photonics Technol. Lett. 14 (2002) 1442[CrossRef].
  11. J.-P. Berenger: IEEE Trans. Antennas Propag. 44 (1996) 110.
  12. H. Appleman, J. Levy, M. Pion, D. Krebs, C. Harding, and M. Zediker: J. Lightwave Technol. 8 (1990) 39.
  13. O. Bryngdahl: J. Opt. Soc. Am. A 63 (1973) 416.
  14. L. B. Soldano and E. C. M. Pennings: J. Lightwave Technol. 13 (1995) 615.
  15. B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. DenBaars: IEEE Photonics Technol. Lett. 12 (2000) 762[CrossRef].

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information