Jpn. J. Appl. Phys. 46 (2007) pp. 3354-3358  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (177K)| |Buy This Article|

Effect of Temperature on Photoresist Critical Dimension during Puddle Development

Hideo Eto1,2, Yasuhiro Ito3, and Tetsuya Homma1

1Postgraduate Courses of Functional Control Systems, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
2Corporate Manufacturing Engineering Center, Toshiba Corporation, 33 Shin-isogo-cho, Isogo-ku, Yokohama 235-0017, Japan
3Semiconductor Company, Toshiba Corporation, 3500 Matsuoka, Oita 870-0125, Japan

(Received December 23, 2006; revised February 7, 2007; accepted February 24, 2007; published online June 6, 2007)

We have investigated the effect of a temperature change on photoresist critical dimension (CD) in a wafer during puddle development. The wafer temperature was decreased by the evaporation latent heat of developer solution during puddle development, and the rate of temperature decrease of the peripheral area was higher than that of the central area in the wafer. The temperature of the peripheral area was approximately 1.3 °C lower than that of the central area after 60 s. The temperature distribution was caused by the difference in heat capacitance in the wafer, which was mainly influenced by the wafer chuck. We investigated the influence of temperature on photoresist CD in the wafer, using a diazonaphthoquinone (DNQ)/novolac photoresist. Photoresist CD changed with temperature at a rate of approximately 5 nm/°C, and the CD of the peripheral area became smaller than that of the central area over time. We can improve the CD distribution by controlling the temperature during puddle development or by using a photoresist with a dissolution rate that is less sensitive to temperature.

DOI: 10.1143/JJAP.46.3354
KEYWORDS:puddle development, evaporation latent heat, critical dimension, temperature

|Full Text PDF (177K)| |Buy This Article| Citation:

References | Citing Articles (2)

  1. K. Sakamoto: Proc. SPIE 4345 (2001) 569[AIP Scitation].
  2. H. Kyoda, A. Okouchi, H. Takeguchi, H. W. Kim, T. Yamamoto, and K. Yoshihara: Proc. SPIE 5039 (2003) 1353[AIP Scitation].
  3. S. Ito, K. Hayasaki, and H. Nakamura: Proc. SPIE 4345 (2001) 665[AIP Scitation].
  4. R. F. Leonard and J. A. McFarland: Proc. SPIE 275 (1981) 187[AIP Scitation].
  5. R. F. Leonard, G. Sim, and R. Weiss: Solid State Technol. 24 (1981) 99.
  6. M. Endo, M. Sasago, H. Nakagawa, A. Ueno, and N. Nomura: Jpn. J. Appl. Phys. 28 (1989) 2035[JSAP].
  7. M. K. Templeton, J. B. Wickman, and R. L. Fischer, Jr.: Proc. SPIE 921 (1988) 360[AIP Scitation].
  8. S. A. Robertson, T. Stevenson, R. J. Holwill, M. Thirsk, I. S. Daraktchiev, and S. G. Hansen: Proc. SPIE 1464 (1991) 232[AIP Scitation].
  9. K. Honda, A. Blakeney, R. Hurditch, S. Tan, and T. Kokubo: Proc. SPIE 1925 (1993) 197[AIP Scitation].
  10. H. Eto, Y. Ito, and T. Homma: Jpn. J. Appl. Phys. 46 (2007) 128[JSAP].
  11. K. S. Ang, S. J. Low, A. C. Lim, C. K. Lim, L. K. Loh, Y.-K. Tan, and X. X. Yang: Proc. SPIE 4344 (2001) 282[AIP Scitation].
  12. K. A. Phan, G. S. Bains, D. A. Steele, J. A. Orth, and R. Subramanian: Proc. SPIE 3332 (1998) 309[AIP Scitation].
  13. T. J. Ha, Y. M. Lee, B. K. Choi, Y. K. Choi, and O. Han: Proc. SPIE 5446 (2004) 118[AIP Scitation].
  14. C. Debbissi, J. Orfi, and S. B. Nasrallah: Int. J. Heat Mass Transfer 46 (2003) 4703.
  15. F. C. Chou, S. C. Gong, C. R. Chung, M. W. Wang, and C. Y. Chang: Jpn. J. Appl. Phys. 43 (2004) 5609[JSAP].
  16. T. Ohfuji, K. Yamanaka, and M. Sakamoto: Proc. SPIE 920 (1988) 190[AIP Scitation].
  17. K. Itoh, K. Kasama, K. Yamanaka, T. Ohfuji, and H. Nozue: NEC Res. Dev. 33 (1992) 15.

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information