Jpn. J. Appl. Phys. 46 (2007) pp. 5859-5864  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (532K)| |Buy This Article|

Femtosecond Pulsed Laser as a Microscalpel for Microdissection and Isolation of Specific Sections from Biological Samples

Masaaki Sakakura1,2, Shinichiro Kajiyama3, Masafumi Tsutsumi3, Jinhai Si4, Eiichiro Fukusaki3, Yutaka Tamaru5, Shin-ichi Akiyama5, Kiyotaka Miura6, Kazuyuki Hirao6, and Mitsuyoshi Ueda7

1JST, Innovation Plaza Kyoto, Kyoto 615-8245, Japan
2International Innovation Center, Kyoto University, Kyoto 615-8520, Japan
3Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
4Department of Electric Science and Technique, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xianning-Xilu 28, Xi'an 710049, China
5Department of Life Sciences, Facultiy of Bioresources, Mie University, Tsu 514-8507, Japan
6Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
7Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan

(Received April 23, 2007; accepted June 13, 2007; published online September 7, 2007)

The femtosecond laser is a candidate tool for dissecting and obtaining specific tissues or cells from biological samples. In this paper, we report on the dissection of flammable (heat-sensitive) plant tissues (Eucommia ulmoides stem) and that of a transparent zebrafish embryo placed in water. During laser dissection in the plant tissues, we observed that a low repetition rate of the irradiations is crucial for reducing the risk of thermal damage. During laser dissection of the zebrafish embryo, the laser-induced bubble formation at the tissue surface disturbed the laser-induced dissection. We concluded that the “interior laser dissection method”, in which the dissection is performed by moving the laser spot inside a biological sample, is an efficient way to dissect a sample that is placed in water. In view of our findings, the advantages of fs laser dissection are discussed on the basis of the physical characteristics of fs laser machining.

DOI: 10.1143/JJAP.46.5859
KEYWORDS:femtosecond laser, laser dissection, tissue isolation, laser scalpel, micromanipulation, Eucommia ulmoides, zebrafish

|Full Text PDF (532K)| |Buy This Article| Citation:

References | Citing Articles (5)

  1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter: Molecular Biology of the Cell (Garland, New York, 2002) 4th ed.
  2. A. Vogel and V. Venugopalan: Chem. Rev. 103 (2003) 577.
  3. L. Amy and R. Storb: Science 150 (1965) 756
  4. K. Fukui, M. Minezawa, Y. Kamisugi, M. Ishikawa, N. Ohmido, T. Yanagisawa, M. Fujishita, and F. Sakai: Theor. Appl. Genet. 84 (1992) 787.
  5. M. R. Emmert-Buck, R. F. Bonner, P. D. Smith, R. F. Chuaqui, Z. Zhuang, S. R. Goldstein, R. A. Weiss, and L. A. Liotta: Science 274 (1996) 998[Science].
  6. J. Colombelli, S. W. Grill, and E. H. K. Stelzer: Rev. Sci. Instrum. 75 (2004) 472[AIP Scitation].
  7. N. Inada and M. C. Wildermuth: Planta 221 (2005) 9.
  8. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao: Opt. Lett. 21 (1996) 1729.
  9. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur: Opt. Lett. 21 (1996) 2023.
  10. C. B. Schaffer, J. F. Garcia, and E. Mazur: Appl. Phys. A 76 (2003) 351[CrossRef].
  11. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai: Opt. Express 13 (2005) 4708.
  12. M. Sakakura and M. Terazima: Phys. Rev. B 71 (2005) 24113[APS].
  13. K. König: Histochem. Cell Biol. 114 (2000) 79.
  14. K. König, I. Riemann, and W. Fritzsche: Opt. Lett. 26 (2001) 819.
  15. K. König, O. Krauss, and I. Riemann: Opt. Express 10 (2002) 171.
  16. A. Heisterkamp, I. Z. Maxwell, E. Mazur, J. M. Underwood, J. A. Nickerson, S. Kumar, and D. E. Ingber: Opt. Express 13 (2005) 3690.
  17. N. Nishimura, C. B. Schaffer, B. Friedman, P. S. Tsai, P. D. Lyden, and D. Kleinfeld: Nat. Methods 3 (2006) 99.
  18. V. Kohli, A. Y. Elezzabi, and J. P. Acker: Lasers Surg. Med. 37 (2005) 227.
  19. W. Watanabe, N. Arakawa, S. Matsunaga, T. Higashi, K. Fukui, K. Isobe, and K. Itoh: Opt. Express 12 (2004) 4203.
  20. P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld: Neuron 39 (2003) 27.
  21. I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger: J. Refract. Surg. 19 (2003) 94.
  22. S. B. Hendricks, S. G. Wildman, and E. J. Jones: Arch. Biochem. 7 (1945) 427.
  23. M. Westerfield: The Zebrafish Book (University of Oregon Press, Eugene, OR, 1995) 3rd ed., Chaps. 1–3.
  24. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf: Appl. Phys. B 81 (2005) 1015[CrossRef].
  25. E. G. Gamaly, A. V. Rode, and B. Luther-Davies: J. Appl. Phys. 85 (1999) 4213[AIP Scitation].
  26. Forest Products Laboratory: Wood Handbook–Wood as an Engineering Material (University Press of the Pacific, Honolulu, HI, 2000) Chap. 3, p. 17.
  27. I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenverg, and M. S. Feld: Proc. Natl. Acad. Sci. U.S.A. 92 (1995) 1960.
  28. L.V. Zhigilei, E. Leveugle, B. J. Garrison, Y. G. Yingling, and M. I. Zeifman: Chem. Rev. 103 (2003) 321.
  29. G. Paltauf and P. E. Dyer: Chem. Rev. 103 (2003) 487.

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information