Jpn. J. Appl. Phys. 46 (2007) pp. 6043-6045  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (278K)| |Buy This Article|

New CdTe Pixel Gamma-Ray Detector with Pixelated Al Schottky Anodes

Shin Watanabe1,2, Shin-nosuke Ishikawa1,2, Shin'ichiro Takeda1,2, Hirokazu Odaka1,2, Takaaki Tanaka3, Tadayuki Takahashi1,2, Kazuhiro Nakazawa2, Masaaki Yamazato4, Akira Higa4, and Sakari Kaneku5

1Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510, Japan
2Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
3Stanford Linear Accelerator Center, Menlo Park, CA 94025, U.S.A.
4Faculty of Engineering, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 930-0213, Japan
5ACRORAD Co., Ltd., Uruma, Okinawa 904-2234, Japan

(Received May 9, 2007; accepted May 25, 2007; published online September 7, 2007)

We developed a new Al Schottky CdTe pixel detector and measured its spectral performance. It has pixelated anodes made of aluminum and a common cathode made of platinum. Because of the low leakage current and the high bias voltage owing to the Schottky diode characteristic and the anode pixel configuration, a good spectral performance including a high energy resolution was achieved. When the pixel detector with a thickness of 0.75 mm was subjected to a bias voltage of 400 V and was operated at -20 °C, the full-width-half-maximum (FWHM) energy resolution of 1.1 and 1.8 keV at 59.5 and 122 keV, respectively, were successfully obtained. The spectral performance obtained with the Al Schottky CdTe pixel detector exceeded that obtained with the conventional In Schottky CdTe pixel detector, which has an In common anode and Pt pixelated cathodes, under the same operating conditions.

URL: http://jjap.jsap.jp/link?JJAP/46/6043/
DOI: 10.1143/JJAP.46.6043
KEYWORDS:gamma-ray detector, cadmium telluride (CdTe), pixel detector


|Full Text PDF (278K)| |Buy This Article| Citation:


References | Citing Articles (11)

  1. T. Takahashi and S. Watanabe: IEEE Trans. Nucl. Sci. 48 (2001) 950.
  2. O. Limousin: Nucl. Instrum. Methods Phys. Res., Sect. A 504 (2003) 24.
  3. T. Takahashi, B. Paul, K. Hirose, C. Matsumoto, R. Ohno, T. Ozaki, K. Mori, and Y. Tomita: Nucl. Instrum. Methods Phys. Res., Sect. A 436 (1999) 111.
  4. T. Takahashi, S. Watanabe, G. Sato, Y. Okada, S. Kubo, Y. Kuroda, M. Onishi, and R. Ohno: IEEE Trans. Nucl. Sci. 48 (2001) 287.
  5. T. Mitani, T. Tanaka, K. Nakazawa, T. Takahashi, T. Takashima, H. Tajima, H. Nakamura, M. Nomachi, T. Nakamoto, and Y. Fukazawa: IEEE Trans. Nucl. Sci. 51 (2004) 2432.
  6. S. Watanabe, S. Takeda, S. Ishikawa, H. Odaka, M. Ushio, T. Tanaka, K. Nakazawa, T. Takahashi, H. Tajima, Y. Fukazawa, Y. Kuroda, and M. Onishi: to be published in Nucl. Instrum. Methods Phys. Res., Sect. A.
  7. H. Toyama, A. Nishihira, M. Yamazato, A. Higa, T. Maehama, R. Ohno, and M. Toguchi: Jpn. J. Appl. Phys. 43 (2004) 6371[JSAP].
  8. H. Toyama, M. Yamazato, A. Higa, T. Maehama, R. Ohno, and M. Toguchi: Jpn. J. Appl. Phys. 44 (2005) 6742[JSAP].
  9. T. Tanaka, S. Watanabe, S. Takeda, K. Oonuki, T. Mitani, K. Nakazawa, T. Takashima, T. Takahashi, H. Tajima, N. Sawamoto, Y. Fukazawa, and M. Nomachi: Nucl. Instrum. Methods Phys. Res., Sect. A 568 (2006) 375.
  10. G. Sato, T. Takahashi, M. Sugiho, M. Kouda, T. Mitani, K. Nakazawa, Y. Okada, and S. Watanabe: IEEE Trans. Nucl. Sci. 49 (2002) 1258.

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information