Jpn. J. Appl. Phys. 46 (2007) pp. 7063-7066  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (127K)| |Buy This Article|

Electrical Properties of Thickness-Vibration-Mode Multilayer Piezoelectric Transformer using Low-Temperature-Sintering-Modified PbTiO3 Ceramics

Juhyun Yoo, Dohyung Kim, Kyungjin Yoo, Hyungsuk Oh, Ilha Lee, Sangho Lee, Larkhoon Hwang, and Yeongho Jeong1

Department of Electrical Engineering, Semyung University, Jechon, Chungbuk 390-711, Korea
1Electric Power Industry Technology Evaluation and Planning, Secho World 2 Stair, 1355-3, Secho dong, Secho Gu, Seoul 137-862, Korea

(Received May 17, 2007; accepted August 20, 2007; published online October 22, 2007)

In this study, a low temperature sintering thickness-vibration-mode multilayer piezoelectric transformer for a DC–DC converter was manufactured using (Pb0.76Ca0.23Sr0.01)Ti0.96(Mn1/3Sb2/3)0.04O3 ceramics. Its electrical properties were investigated according to the variations in frequency and load resistance. The voltage step-up ratio of the multilayer piezoelectric transformer showed a maximum value at a resonant frequency of 1.444 MHz and increased with an increase in load resistance. The efficiency of the multilayer piezoelectric transformer showed the highest value at a load resistance of 17 Ω. The output power increased with increasing input voltage. When the output impedance of the multilayer piezoelectric transformer coincided with the load resistance, output power showed the highest value of 18 W within a 20 °C temperature increase.

DOI: 10.1143/JJAP.46.7063
KEYWORDS:low-temperature sintering, thickness-vibration-mode, multilayer piezoelectric transformer (MPT), DC–DC converter

|Full Text PDF (127K)| |Buy This Article| Citation:

References | Citing Articles (5)

  1. J. H. Yoo, K. H. Yoon, Y. W. Lee, S. S. Suh, J. S. Kim, and C. S. Yoo: Jpn. J. Appl. Phys. 39 (2000) 2680[JSAP].
  2. K. Uchino and S. Takahashi: Solid State Mater. Sci. (1996) p. 698.
  3. R. Zuo, L. Li, and Z. Gui: Mater. Sci. Eng., A 326 (2002) 202.
  4. T. Hayashi, T. Hasegawa, J. Tomizawa, and Y. Akiyama: Jpn. J. Appl. Phys. 42 (2003) 6074[JSAP].
  5. K. J. Yoo, K. H. Chung, J. H. Yoo, and H. S. Yoon: Integrated Ferroelectr. 90 (2007) 20.
  6. B. Koc, Y. K. Gao, and K. Uchino: Jpn. J. Appl. Phys. 42 (2003) 509[JSAP].
  7. J. Y. Yoo, K. H. Yoon, S. M. Hwang, S. J. Suh, J. S. Kim, and C. S. Yoo: Sens. Actuators A 90 (2001) 132.
  8. H. Shin, H. Ahn, and D. Han: Mater. Chem. Phys. 92 (2005) 616.
  9. J. Seo, H. Joo, and H. Jung: Sens. Actuators A 121 (2005) 520.
  10. N. Y. Wong, Y. Zhang, H. L. W. Chan, and C. L. Choy: Mater. Sci. Eng. B 99 (2003) 164.

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information