Jpn. J. Appl. Phys. 46 (2007) pp. 7991-7994  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (132K)| |Buy This Article|

Effect of Incident Beam Width on Light Transmission Enhancement by Bow-Tie-Shaped Nano-Aperture

Dae-Seo Park, Hyun Jun Kim1, Beom Hoan O, Se Geun Park, El-Hang Lee, and Seung Gol Lee

Optics and Photonics Elite Research Academy (OPERA), School of Information and Communication Engineering, Inha University, 253 Yonghyun-dong, Nam-gu, Incheon 402-751, Korea
1Central R&D Institute CAE Group, Samsung Electro-Mechanics Co., Ltd., Maetan 3-dong 314, Yeongtong-gu, Suwon, Gyeonggi-do 443-373, Korea

(Received November 22, 2006; revised September 3, 2007; accepted September 12, 2007; published online December 6, 2007)

In this paper, a bow-tie-shaped nano-aperture is proposed to enhance light transmission and obtain a tiny beam spot. The transmission and focusing characteristics of the proposed aperture are analyzed numerically using a dispersive three-dimensional finite-difference time-domain (3D-FDTD) method. The spot size and transmittance enhancement of the light transmitted through the optimized aperture are approximately λ/20 and 400 times, respectively. In contrast to the bowtie antenna, the proposed nano-aperture has a bow-tie-shaped opening at its center and its surroundings are filled with metal. Thus, the transmittance enhancement can be further increased by extending the interaction area between an incident beam and the metal portion of the nano-aperture, which is accomplished by increasing the beam width of an incident light.

URL: http://jjap.jsap.jp/link?JJAP/46/7991/
DOI: 10.1143/JJAP.46.7991
KEYWORDS:nano-aperture, surface plasmon, light enhancement, high transmission efficiency, finite-difference time-domain (FDTD) method


|Full Text PDF (132K)| |Buy This Article| Citation:


References | Citing Articles (4)

  1. E. H. Synge: Philos. Mag. 6 (1928) 356.
  2. H. A. Bethe: Phys. Rev. 66 (1944) 163[APS].
  3. X. Shi, L. Hesselink, and R. L. Thornton: Opt. Lett. 28 (2003) 1320.
  4. J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink: Appl. Phys. Lett. 85 (2004) 648[AIP Scitation].
  5. K. Tanaka and M. Tanaka: Opt. Commun. 233 (2004) 231[CrossRef].
  6. E. X. Jin and X. Xu: Jpn. J. Appl. Phys. 43 (2004) 407[JSAP].
  7. E. X. Jin and X. Xu: Appl. Phys. Lett. 86 (2005) 111106[AIP Scitation].
  8. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff: Nature 391 (1998) 667[CrossRef].
  9. T. Thio, K. M. Pellerin, R. A. Linke, T. W. Ebbesen, and H. J. Lezec: Opt. Lett. 26 (2001) 1972.
  10. R. D. Grober, R. J. Schoelkopf, and D. E. Prober: Appl. Phys. Lett. 70 (1997) 1354[AIP Scitation].
  11. D. S. Park, H. J. Kim, S. G. Lee, B. H. O, S. G. Park, and E. H. Lee: presented at 8th Near-Field Optics, Seoul, Korea, 5–9 Sept., 2004.
  12. D. S. Park, B. H. O, S. G. Park, E. H. Lee, and S. G. Lee: presented at 11th OptoElectronics and Communication Conf., Kaohsiung, Taiwan, 3–7 July, 2006.
  13. E. X. Jin and X. Xu: Appl. Phys. Lett. 88 (2006) 153110[AIP Scitation].
  14. H. Raether: Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988) p. 4.
  15. K. Kunz and R. Luebbers: The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, FL, 1996) pp. 11 and 123.
  16. C. K. Hwangbo, C. J. Choi, and D. C. Choi: Hankook Kwanghak Hoeji 2 (1991) 59 [in Korean].
  17. H. Y. Li, S. M. Zhou, J. Li, Y. L. Chen, S. Y. Wang, Z. C. Shen, L. Y. Chen, H. Liu, and X. X. Zhang: Appl. Opt. 40 (2001) 6307.
  18. H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok: Phys. Rev. E 67 (2003) 036608[APS].
  19. J. Lindberg, K. Lindfors, T. Setala, M. Kaivola, and A. T. Friberg: Opt. Express 12 (2004) 623.

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information