Jpn. J. Appl. Phys. 46 (2007) pp. L571-L573  |Previous Article|  |Table of Contents|
|Full Text PDF (236K)| |Buy This Article|

Letter

Suppression of Current Hysteresis in Carbon Nanotube Thin-Film Transistors

Kazuhito Tsukagoshi1,2, Masahiro Sekiguchi1,3, Yoshinobu Aoyagi1,2,3, Takayoshi Kanbara1,4, Taishi Takenobu2,4, and Yoshihiro Iwasa2,4

1RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
2CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 333-0012, Japan
3Tokyo Institute of Technology, Yokohama 336-8502, Japan
4Institute for Material Research, Tohoku University, Sendai 980-8577, Japan

(Received April 12, 2007; accepted April 29, 2007; published online June 8, 2007)

Source–drain current hysteresis in carbon nanotube film transistors is effectively suppressed by a combination of ultraviolet/ozone treatment and the thermal evaporation of a protective pentacene film. Thin-film channel transistors fabricated from single-walled carbon nanotubes contain amorphous carbon particles and molecules adsorbed from the atmosphere as charge-trapping sites. Ultraviolet irradiation under exposure to ozone is shown to be effective for eliminating amorphous carbon, and the evaporation of a pentacene layer prevents adsorption from the atmosphere. The combination of these treatments reduces hysteresis in carbon nanotube film transistors.

URL: http://jjap.jsap.jp/link?JJAP/46/L571/
DOI: 10.1143/JJAP.46.L571
KEYWORDS:carbon nanotube, thin-film transistor, hysteresis, trap, pentacene


|Full Text PDF (236K)| |Buy This Article| Citation:


References | Citing Articles (6)

  1. E. Artukovic, M. Kaempgen, D. S. Hecht, S. Roth, and G. Gruner: Nano Lett. 5 (2005) 757[CrossRef].
  2. E. S. Snow, P. M. Campbell, M. G. Ancona, and J. P. Novak: Appl. Phys. Lett. 86 (2005) 033105[AIP Scitation].
  3. T. Takenobu, T. Takahashi, T. Kanbara, K. Tsukagoshi, Y. Aoyagi, and Y. Iwasa: Appl. Phys. Lett. 88 (2006) 033511[AIP Scitation].
  4. Y. Zhou, A. Gaur, S.-H. Hur, C. Kocabas, M. A. Meitl, M. Shim, and J. A. Rogers: Nano Lett. 4 (2004) 2031[CrossRef].
  5. M. Shiraishi, T. Takenobu, T. Iwai, Y. Iwasa, H. Kataura, and M. Ata: Chem. Phys. Lett. 394 (2004) 110[CrossRef].
  6. P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl: Science 287 (2000) 1801[Science].
  7. W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, and H. Dai: Nano Lett. 3 (2003) 193[CrossRef].
  8. P. S. Na, H. Kim, H.-M. So, K.-J. Kong, H. Chang, B. H. Ryu, Y. Choi, J.-O Lee, B.-K. Kim, J.-J. Kim, and J. Kim: Appl. Phys. Lett. 87 (2005) 093101[AIP Scitation].
  9. J. P. Novak, E. S. Snow, E. J. Houser, D. Park, J. L. Stepnowski, and R. A. McGill: Appl. Phys. Lett. 83 (2003) 4026[AIP Scitation].
  10. E. S. Snow, J. P. Novak, M. D. Lay, E. H. Houser, F. K. Perkins, and P. M. Campbell: J. Vac. Sci. Technol. B 22 (2004) 1990[AIP Scitation].
  11. H. E. Unalan, G. Fanchini, A. Kanwal, A. D. Pasquier, and M. Chhowalla: Nano Lett. 6 (2006) 677[CrossRef].
  12. E. S. Snow, J. P. Novak, M. D. Lay, and F. K. Perkins: Appl. Phys. Lett. 85 (2004) 4172[AIP Scitation].
  13. N. Yoneya, K. Tsukagoshi, and Y. Aoyagi: Appl. Phys. Lett. 81 (2002) 2250[AIP Scitation].
  14. A. Kanda, K. Tsukagoshi, Y. Ootuka, and Y. Aoyagi: Appl. Phys. Lett. 79 (2001) 1354[AIP Scitation].
  15. M. Lefenfeld, G. Blanchet, and J. A. Rogers: Adv. Mater. 15 (2003) 1188[CrossRef].
  16. K. Tsukagoshi, I. Iwao, and Y. Aoyagi: Appl. Phys. Lett. 85 (2004) 1021[AIP Scitation].
  17. D. R. Hines, S. Mezhenny, M. Breban, E. D. Williams, V. W. Ballarotto, G. Esen, A. Southard, and M. S. Fuhrer: Appl. Phys. Lett. 86 (2005) 163101[AIP Scitation].
  18. C. M. Aguirre, S. Auvray, S. Pigeon, R. Izquierdo, P. Desjardins, and R. Martel: Appl. Phys. Lett. 88 (2006) 183104[AIP Scitation].
  19. X.-Z. Bo, C. Y. Lee, M. S. Strano, M. Goldfinger, C. Nuckolls, and G. B. Blanchet: Appl. Phys. Lett. 86 (2005) 182102[AIP Scitation].

|TOP|  |Previous Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information