Jpn. J. Appl. Phys. 47 (2008) pp. 2880-2883  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (153K)| |Buy This Article|

First Demonstration of Electrically Driven 1.55 µm Single-Photon Generator

Toshiyuki Miyazawa1,2, Shigekazu Okumura3, Shinnichi Hirose3, Kazuya Takemoto3, Motomu Takatsu3, Tatsuya Usuki1,2, Naoki Yokoyama1,3, and Yasuhiko Arakawa1,3,4

1Collaborative Institute for Nano Quantum Information Electronics, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
2Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
3Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0197, Japan
4Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan

(Received October 1, 2007; accepted December 14, 2007; published online April 25, 2008)

We succeeded in demonstrating single-photon generation from a single InAs quantum dot (QD) at a 1.55 µm band by current injection. A p–i–n light-emitting diode (LED), which includes a quantum dot layer, was grown on an n-InP substrate and fabricated into a nano scaled mesa structure with electrodes. Electrical pulses of 80 ps width were injected in order to generate excitons in quantum dots. We directly determined the electroluminescence (EL) and radiative lifetime of a single exciton to be 1.59 ns. Hanbury-Brown and Twiss (HBT)-type photon correlation measurements proved the antibunching behavior of exciton recombination in a current-injected quantum dot at a wavelength of 1551.2 nm. These measurements demonstrate that our QD LEDs are sources of triggered single photons in the C-band by current injection.

URL: http://jjap.jsap.jp/link?JJAP/47/2880/
DOI: 10.1143/JJAP.47.2880
KEYWORDS:C-band, electrically driven single-photon generator, single quantum dot, InP substrate, radiative lifetime


|Full Text PDF (153K)| |Buy This Article| Citation:


References | Citing Articles (13)

  1. E. Waks, C. Santori, and Y. Yamamoto: Phys. Rev. A 66 (2002) 042315[APS].
  2. T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa: Jpn. J. Appl. Phys. 44 (2005) L620[JSAP].
  3. K. Takemoto, M. Takatsu, S. Hirose, N. Yokoyama, Y. Sakuma, T. Usuki, T. Miyazawa, and Y. Arakawa: J. Appl. Phys. 101 (2007) 081720[AIP Scitation].
  4. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper: Science 295 (2002) 102[Science].
  5. X. Xu, D. A. Williams, and J. R. A. Cleaver: Appl. Phys. Lett. 85 (2004) 3238[AIP Scitation].
  6. M. B. Ward, T. Farrow, P. See, Z. L. Yuan, O. Z. Karimov, A. J. Bennett, A. J. Shields, P. Atkinson, K. Cooper, and D. A. Ritchie: Appl. Phys. Lett. 90 (2007) 063512[AIP Scitation].
  7. R. Hanbury Brown and R. Q. Twiss: Nature 178 (1956) 1447[CrossRef].
  8. S. Fréchengues, N. Bertru, V. Drouot, B. Lambert, S. Robinet, S. Loualiche, D. Lacombe, and A. Ponchet: Appl. Phys. Lett. 74 (1999) 3356[AIP Scitation].
  9. Y. Sakuma, K. Takemoto, S. Hirose, T. Usuki, and N. Yokoyama: Physica E 26 (2005) 81[CrossRef].
  10. K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, and N. Yokoyama: Jpn. J. Appl. Phys. 43 (2004) L349[JSAP].
  11. G. Ribordy, J. D. Gautier, H. Zbinden, and N. Gisin: Appl. Opt. 37 (1998) 2272.
  12. C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, H. de Riedmatten, H. Zbinden, and N. Gisin: Appl. Phys. Lett. 88 (2006) 131102[AIP Scitation].
  13. K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, T. Miyazawa, M. Takatsu, and Y. Arakawa: Jpn. J. Appl. Phys. 43 (2004) L993[JSAP].

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information