Jpn. J. Appl. Phys. 47 (2008) pp. 325-328  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (118K)| |Buy This Article|

Measurement of Pressure-Induced Broadening and Shift Coefficients of Carbon Dioxide Absorption Lines around 1.6 µm for using Differential Absorption Lidar

Daisuke Sakaizawa1, Chikao Nagasawa1,2, Tomohiro Nagai3, Makoto Abo1,2, Yasukuni Shibata1,2, and Masahisa Nakazato3

1Graduate School of Engineering, Tokyo Metropolitan University, 1-1 MinamiOsawa, Hachioji, Tokyo 192-0397, Japan
2Graduate School of System Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino, Tokyo 191-0065, Japan
3Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan

(Received May 28, 2007; revised October 9, 2007; accepted October 21, 2007; published online January 18, 2008)

A precise measurement of the vertical profiles of carbon dioxide is required for reducing the uncertainty in the carbon budget. In order to achieve measurements of the vertical CO2 distribution with an uncertainty better than approximately 4 ppm, a precise knowledge of the pressure-dependent broadening and shift coefficients of CO2 absorption lines is indispensable. In this paper, we report the measurement of air pressure-induced shift coefficients for eight absorption lines at around 1.57 µm. On average, the pressure shift coefficients are -0.30 MHz/Torr for pure CO2 and -0.24 MHz/Torr under an air-mixed condition.

DOI: 10.1143/JJAP.47.325
KEYWORDS:carbon dioxide, pressure-shift coefficient, pressure-broadening coefficient, differential absorption lidar, DIAL

|Full Text PDF (118K)| |Buy This Article| Citation:

References | Citing Articles (6)

  1. G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh: Appl. Opt. 43 (2004) 5092.
  2. F. Gibert, P. H. Flamant, D. Bruneau, and C. Loth: Appl. Opt. 45 (2006) 4448.
  3. A. Belmonte: Appl. Opt. 45 (2006) 7097.
  4. S. Ishii, K. Mizutani, T. Takahashi, and T. Itabe: presented at Conf. Meteorological Society of Japan, 2005.
  5. T. Nagai, C. Nagasawa, M. Abo, Y. Shibata, M. Nakazato, D. Sakaizawa, and J. Ono: Proc. 23rd Int. Laser Radar Conf., 2006, Part 1, p. 541.
  6. D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, and M. Nakazato: Proc. 23rd Int. Laser Radar Conf., 2006, Part 1, p. 535.
  7. D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, and M. Nakazato: Proc. 23rd Int. Laser Radar Conf., 2006, Part 1, p. 149.
  8. J. Henningsen and H. Simonsen: J. Mol. Spectrosc. 203 (2000) 16.
  9. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Van der Auwera, P. Varanasi, and G. Wagner: J. Quant. Spectrosc. Radiat. Transfer 96 (2005) 139.
  10. S. Nakamichi, Y. Kawaguchi, H. Fukuda, S. Enami, S. Hashimoto, M. Kawasaki, T. Umekawa, I. Morino, H. Suto, and G. Inoue: Phys. Chem. Chem. Phys. 8 (2006) 364.
  11. M. De Rosa, C. Corsi, M. Gabrysch, and F. D'amato: J. Quant. Spectrosc. Radiat. Transfer 61 (1999) 97.
  12. J. Zúñiga, A. Bastida, M. Alacid, and A. Requena: J. Mol. Spectrosc. 205 (2001) 62.
  13. L. Régalia-Jarlot, V. Zéninari, B. Parvitte, A. Grossel, X. Thomas, P. von der Heyden, and G. Durry: J. Quant. Spectrosc. Radiat. Transfer 101 (2006) 325.

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information