Jpn. J. Appl. Phys. 48 (2009) 090202 (3 pages)  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (229K)| |Buy This Article|

Rapid Communication

Analysis of Atomic and Electronic Structures of Cu2ZnSnS4 Based on First-Principle Calculation

Masaya Ichimura and Yuki Nakashima

Department of Engineering Physics, Electronics and Mechanics, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan

(Received June 2, 2009; accepted June 26, 2009; published online September 7, 2009)

Atomic and electronic structures of Cu2ZnSnS4 (CZTS) are discussed on the basis of the first-principle pseudopotential method. CZTS is usually assumed to have the stannite or kesterite structure, but one can consider three other structures under the condition that a S atom is bonded to two Cu, one Zn, and one Sn atom. For each of the five structures, the lattice constants and atom positions are optimized, and the total energy and density of states are calculated. The energy difference per atom between the structures is smaller than the thermal energy at room temperature, and therefore, CZTS is expected to be composed of five phases with different crystal structures. X-ray diffraction patterns simulated on the basis of the calculation results are consistent with the experimental results.

URL: http://jjap.jsap.jp/link?JJAP/48/090202/
DOI: 10.1143/JJAP.48.090202


|Full Text PDF (229K)| |Buy This Article| Citation:


References | Citing Articles (14)

  1. H. Katagiri: Thin Solid Films 480–481 (2005) 426[CrossRef].
  2. H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W. S. Maw, T. Fukano, T. Ito, and T. Motohiro: Appl. Phys. Express 1 (2008) 041201[JSAP].
  3. J. S. Seol, S. Y. Lee, J. C. Lee, H. D. Nam, and K. H. Kim: Sol. Energy Mater. Sol. Cells 75 (2003) 155.
  4. A. Weber, H. Krauth, S. Perlt, B. Schubert, I. Kötschau, S. Schorr, and H.-W. Schock: Thin Solid Films 517 (2009) 2524[CrossRef].
  5. H. Araki, A. Mikaduki, Y. Kubo, T. Sato, K. Jimbo, W. S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, and A. Takeuchi: Thin Solid Films 517 (2008) 1457[CrossRef].
  6. R. Schurr, A. Hölzing, S. Jost, R. Hock, T. Voß, J. Schulze, A. Kirbs, A. Ennaoui, M. Lux-Steiner, A. Weber, I. Kötschau, and H.-W. Schock: Thin Solid Films 517 (2009) 2465[CrossRef].
  7. A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kötschau, H.-W. Schock, R. Shurr, A. Hölzing, S. Jost, R. Hock, T. Voß, J. Schulze, and A. Kirbs: Thin Solid Films 517 (2009) 2511[CrossRef].
  8. J. J. Scragg, P. J. Dale, and L. M. Peter: Thin Solid Films 517 (2009) 2481[CrossRef].
  9. K. Moriya, K. Tanaka, and H. Uchiki: Jpn. J. Appl. Phys. 46 (2007) 5780[JSAP].
  10. N. Nakayama and K. Ito: Appl. Surf. Sci. 92 (1996) 171[CrossRef].
  11. K. Moriya, K. Tanaka, and H. Uchiki: Jpn. J. Appl. Phys. 44 (2005) 715[JSAP].
  12. K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki: Sol. Energy Mater. Solar Cells 93 (2009) 583.
  13. S. R. Hall, J. T. Szymanski, and J. M. Stewart: Can. Mineral. 16 (1978) 131.
  14. S. Chen, X. G. Gong, A. Walsh, and S. H. Wei: Appl. Phys. Lett. 94 (2009) 041903[AIP Scitation].
  15. J. Paier, R. Asahi, A. Nagoya, and G. Kresse: Phys. Rev. B 79 (2009) 115126[APS].
  16. T. Maeda, S. Nakamura, and T. Wada: Ext. Abstr. (56th Spring Meet., 2009); Japan Society of Applied Physics and Related Societies, 2a-P18-23 [in Japanese].
  17. http://www.ciss.iis.u-tokyo.ac.jp/rss21/en/index.html
  18. J. P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett. 77 (1996) 3865[APS].

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information