Jpn. J. Appl. Phys. 49 (2010) 04DC12 (5 pages)  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (299K)| |Buy This Article|

Investigation of Novel Si/SiGe Heterostructures and Gate Induced Source Tunneling for Improvement of p-Channel Tunnel Field-Effect Transistors

Hasanali G. Virani, Rama Bhadra Rao, and Anil Kottantharayil

Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India

(Received September 23, 2009; revised December 13, 2009; accepted December 29, 2009; published online April 20, 2010)

This paper presents optimization techniques for 20 nm channel length novel Si/SiGe heterojunction p–i–n p-channel tunnel field-effect transistors using extensive device simulations. Three different device architectures are compared. It is shown that depending on the Ge mole fraction in SiGe and the gate voltage, the tunneling could be from the channel to source or within the source only. Due to this, a very careful optimization of the Ge mole fraction is required to achieve optimum performance. It is also shown for the first time that a vertical gate induced source tunneling is present in the devices and that this could be utilized for improving ON state current by increasing the gate–source overlap. Of the three device architectures compared, the structure with SiGe channel and Si source/drain is found to give better ON state current. Gate length scalability is found to be superior for the structure with SiGe source, and Si channel/drain.

DOI: 10.1143/JJAP.49.04DC12

|Full Text PDF (299K)| |Buy This Article| Citation:

References | Citing Articles (2)

  1. International Technology Roadmap for Semiconductors (2007) [].
  2. K. K. Bhuwalka, J. Schulze, and I. Eisele: Proc. 34th ESSDERC, 2004, p. 241.
  3. K. K. Bhuwalka, J. Schulze, and I. Eisele: IEEE Trans. Electron Devices 52 (2005) 1541[CrossRef].
  4. K. K. Bhuwalka, M. Born, M. Schindler, M. Schmidt, T. Sulima, and I. Eisele: Jpn. J. Appl. Phys. 45 (2006) 3106[JSAP].
  5. K. Boucart and A. M. Ionescu: IEEE Trans. Electron Devices 54 (2007) 1725[CrossRef].
  6. J. Knoch, S. Mantl, and J. Appenzeller: Solid-State Electron. 51 (2007) 572[CrossRef].
  7. W. Y. Choi, B. Park, J. D. Lee, and T. K. Liu: IEEE Electron Device Lett. 28 (2007) 743[CrossRef].
  8. V. Nikam, K. Bhuwalka, and A. Kottantharayil: Tech. Dig. 66th Device Research Conf., 2008, p. 77.
  9. O. M. Nayfeh, C. N. Chlirigh, J. L. Hoyt, and D. A. Antoniadis: IEEE Electron Device Lett. 29 (2008) 468[CrossRef].
  10. N. Patel, A. Ramesha, and S. Mahapatra: Microelectron. J. 39 (2008) 1671.
  11. F. Mayer, C. L. Royer, J. F. Damlencourt, K. Romanjek, F. Andrieu, C. Tabone, B. Previtali, and S. Deleonibus: IEDM Tech. Dig., 2008, p. 402.
  12. C. L. Royer and F. Mayer: 10th Int. Conf. Ultimate Integration of Silicon, 2009, p. 53.
  13. T. Krishnamohan, D. Kim, S. Raghunathan, and K. Saraswat: IEDM Tech. Dig., 2008, p. 947.
  14. E. Toh, G. H. Wang, L. Chan, D. Sylvester, C. Heng, G. Samudra, and Y. Yeo: Jpn. J. Appl. Phys. 47 (2008) 2593[JSAP].
  15. A. S. Verhulst, W. G. Vandenberghe, K. Maex, S. D. Gendt, M. M. Heyns, and G. Groeseneken: IEEE Electron Device Lett. 29 (2008) 1398[CrossRef].
  16. Medici Version Y-2006.06 (June 2006).
  17. K. K. Bhuwalka: Dr. Thesis, Universitaet der Bundeswehr, Munich, Germany (2005).
  18. A. S. Verhulst, W. G. Vandenberghe, K. Maex, and G. Groeseneken: Appl. Phys. Lett. 91 (2007) 053102[AIP Scitation].

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information