Jpn. J. Appl. Phys. 49 (2010) 07HD04 (5 pages)  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (191K)| |Buy This Article|

Array Configurations for Higher Power Generation in Piezoelectric Energy Harvesting

Daisuke Koyama and Kentaro Nakamura

Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan

(Received November 24, 2009; accepted February 12, 2010; published online July 20, 2010)

To realize a piezoelectric energy-harvesting device with higher volume energy density, the energy conversion efficiencies of different array configurations were investigated. The energy conversion efficiencies of the energy-harvesting element with several array configurations were calculated by finite element analysis (FEA). For the same volume of 22 ×19 ×1 mm3, one array configuration has two large cantilevers (18 ×9.5 ×1 mm3) and one has eight small cantilevers (9 ×4.25 ×1 mm3). One-mm-thick piezoelectric zirconate titanate (PZT) elements were attached on the surface of each aluminum cantilever. A harmonic vibration was applied and the electric power generated was measured by connecting a load resistance. A higher volume energy density was obtained with the smaller array configuration. A maximum output power of 2.8 mW and a conversion efficiency of 8.1% were achieved for a vibration velocity of 0.7 mm/s and a load resistance of 51 kΩ.

DOI: 10.1143/JJAP.49.07HD04

|Full Text PDF (191K)| |Buy This Article| Citation:

References | Citing Article (1)

  1. M. J. Ramsay and W. W. Clark: Proc. SPIE 4332 (2001) 429[AIP Scitation].
  2. E. B. Tadmor and G. Kósa: J. Microelectromech. Syst. 12 (2003) 899.
  3. S. Roundy and P. K. Wright: Smart Mater. Struct. 13 (2004) 1131.
  4. M. Ericka, D. Vasic, F. Costa, and G. Poulain: Proc. IEEE Ultrasonics Symp., 2005, p. 946.
  5. H. W. Kim, S. Priya, K. Uchino, D. Markley, and R. E. Newnham: J. Electroceram. 15 (2005) 27.
  6. D. Vasic, E. Sarraute, F. Costa, P. Sangouard, and E. Cattan: Sens. Actuators A 117 (2005) 317.
  7. S. R. Platt, S. Farritor, K. Garvin, and H. Haider: IEEE/ASME Trans. Mechatronics 10 (2005) 455.
  8. S. P. Beeby, M. J. Tudor, and N. M. White: Meas. Sci. Technol. 17 (2006) R175.
  9. S. Wang, K. H. Lam, C. L. Sun, K. W. Kwok, and L. W. Chan: Appl. Phys. Lett. 90 (2007) 113506[AIP Scitation].
  10. J. Ajitsaria, S. Y. Choe, D. Shen, and D. J. Kim: Smart Mater. Struct. 16 (2007) 447.
  11. A. Erturk and D. J. Inman: Smart Mater. Struct. 17 (2008) 065016.
  12. M. Umeda, K. Nakamura, and S. Ueha: Jpn. J. Appl. Phys. 35 (1996) 3267[JSAP].
  13. D. Koyama and K. Nakamura: Appl. Acoust. 71 (2010) 439.
  14. Y. Takahashi, M. Iijima, and E. Fukada: Jpn. J. Appl. Phys. 28 (1989) L2245[JSAP].
  15. Y. Takahashi, S. Ukishima, M. Iijima, and E. Fukada: J. Appl. Phys. 70 (1991) 6983[AIP Scitation].
  16. X. S. Wang, M. Iijima, Y. Takahashi, and E. Fukada: Jpn. J. Appl. Phys. 32 (1993) 2768[JSAP].
  17. S. Sugawara, M. Yamanaka, and S. Kudo: Jpn. J. Appl. Phys. 48 (2009) 07GF04[JSAP].
  18. D. Koyama and K. Nakamura: Jpn. J. Appl. Phys. 48 (2009) 07GM07[JSAP].

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information