Jpn. J. Appl. Phys. 49 (2010) 116504 (4 pages)  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (632K)| |Buy This Article|

Formation of Selective High Barrier Region by Inductively Coupled Plasma Treatment on GaN-Based Light-Emitting Diodes

Ting-Wei Kuo, Shi-Xiong Lin, Pin-Kun Hung, Kwok-Keung Chong1, Chen-I Hung2, and Mau-Phon Houng

Institute of Microelectronics, Department of Electrical Engineering, National Cheng-Kung University, Tainan 701, Taiwan, R.O.C.
1Department of Microelectronics Engineering, National Kaohsiung Marine University, Kaoshiung 811, Taiwan, R.O.C.
2Department of Mechanical Engineering, National Cheng-Kung University, Tainan 701, Taiwan, R.O.C.

(Received May 27, 2010; revised July 2, 2010; accepted August 6, 2010; published online November 22, 2010)

By inductively coupled plasma (ICP) etching, a selective high barrier region (SHBR) was fabricated below the p-pad metal electrode for modifying the injection current distribution on p-type GaN of GaN-based light-emitting diodes (LEDs). Through the analysis of current noise power spectra, the samples with ICP etching treatment have excess nitrogen vacancies at the selectively etched surface of p-type GaN; thus, they have a lower hole concentration than the as-grown sample, resulting in a larger barrier height for carrier transport. With this SHBR, the light-output power for the LED chip measured at 20 mA was significantly increased by 12% as compared with that for the conventional LED chip. The light-output power increase could be attributed to a relative reduction in optical power absorption under the p-pad electrode and a higher density of current effectively injected into the active layer of the LED by the SHBR structure.

DOI: 10.1143/JJAP.49.116504

|Full Text PDF (632K)| |Buy This Article| Citation:

References | Citing Articles (3)

  1. R. C. Jayasinghe, G. Ariyawansa, N. Dietz, A. G. Unil Perera, S. G. Matsik, H. B. Yu, I. T. Ferguson, A. Bezinger, S. R. Laframboise, M. Buchanan, and H. C. Liu: Opt. Lett. 33 (2008) 2422.
  2. J. M. Barkera, D. K. Ferry, D. D. Koleske, and R. J. Shul: J. Appl. Phys. 97 (2005) 063705[AIP Scitation].
  3. S. L. Selvaraj, T. Suzue, and T. Egawa: IEEE Electron Device Lett. 30 (2009) 587[CrossRef].
  4. J. H. Kang, H. G. Kim, H. K. Kim, H. Y. Kim, J. H. Ryu, P. Uthirakumar, N. Han, and C. H. Hong: Jpn. J. Appl. Phys. 48 (2009) 102104[JSAP].
  5. C. C. Liu, S. X. Lin, C. C. Wang, K. K. Chong, C. I. Hung, and M. P. Houng: Jpn. J. Appl. Phys. 48 (2009) 082102[JSAP].
  6. C.-C. Wang, H.-C. Lu, C.-C. Liu, F.-L. Jenq, Y.-H. Wang, and M.-P. Houng: IEEE Photonics Technol. Lett. 20 (2008) 428[CrossRef].
  7. C. E. Lee, B. S. Cheng, Y. C. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang: Electrochem. Solid-State Lett. 12 (2009) H44.
  8. T. K. Kim, S. H. Kim, S. S. Yang, J. K. Son, K. H. Lee, Y. G. Hong, K. H. Shim, J. W. Yang, K. Y. Lim, S. J. Bae, and G. M. Yang: Appl. Phys. Lett. 94 (2009) 161107[AIP Scitation].
  9. L. C. Peng, W. C. Lai, M. N. Chang, S. C. Shei, and J. K. Sheu: IEEE Photonics Technol. Lett. 21 (2009) 1659[CrossRef].
  10. C. C. Wang, H. Ku, C. C. Liu, K. K. Chong, C. I. Hung, Y. H. Wang, and M. P. Houng: Appl. Phys. Lett. 91 (2007) 121109[AIP Scitation].
  11. C.-M. Lee, C.-C. Chuo, Y.-C. Liu, I.-L. Chen, and J.-I. Chyi: IEEE Electron Device Lett. 25 (2004) 384[CrossRef].
  12. H. C. Wang, Y. K. Su, C. L. Lin, W. B. Chen, and S. M. Chen: Jpn. J. Appl. Phys. 43 (2004) 2006[JSAP].
  13. H. W. Jang and J.-L. Lee: J. Vac. Sci. Technol. 23 (2005) 2284[AIP Scitation].
  14. G. I. Hatakoshi, Y. Hattori, S. Saito, N. Shida, and S. Nunoue: Jpn. J. Appl. Phys. 46 (2007) 5419[JSAP].
  15. H. H. Huang, H. Y. Zeng, C. L. Lee, S. C. Lee, and W. I. Lee: Appl. Phys. Lett. 89 (2006) 202115[AIP Scitation].
  16. X. A. Cao, S. J. Pearton, A. P. Zhang, G. T. Dang, F. Ren, R. J. Shul, L. Zhang, R. Hickman, and J. M. Van Hove: Appl. Phys. Lett. 75 (1999) 2569[AIP Scitation].
  17. J. S. Jang: Appl. Phys. Lett. 93 (2008) 081118[AIP Scitation].
  18. M. Kato, K. Mikamo, M. Ichimura, M. Kanechika, O. Ishiguro, and T. Kachi: J. Appl. Phys. 103 (2008) 093701[AIP Scitation].
  19. K. P. Hsueh, H. T. Hsu, C. M. Wang, S. C. Huang, Y. M. Hsina, and J. K. Sheu: Appl. Phys. Lett. 87 (2005) 252107[AIP Scitation].
  20. C.-C. Liu, Y.-H. Chen, M.-P. Houng, Y.-H. Wang, Y.-K. Su, W.-B. Chen, and S.-M. Chen: IEEE Photonics Technol. Lett. 16 (2004) 1444[CrossRef].
  21. C. C. Wang, F. L. Jenq, C. C. Liu, C. I. Hung, Y. H. Wang, and M. P. Houng: Semicond. Sci. Technol. 23 (2008) 025012[IoP STACKS].
  22. C. Huh, J.-M. Lee, D.-J. Kim, and S.-J. Park: J. Appl. Phys. 92 (2002) 2248[AIP Scitation].
  23. C.-F. Tsai, Y.-K. Su, and C.-L. Lin: IEEE Photonics Technol. Lett. 21 (2009) 996[CrossRef].
  24. H. H. Jeong, S. Y. Lee, Y. K. Jeong, K. K. Choi, J. O. Song, Y. H. Lee, and T. Y. Seong: Electrochem. Solid-State Lett. 13 (2010) H237.
  25. H. W. Huang, F. I. Lai, J. K. Huang, C. H. Lin, K. Y. Lee, C. F. Lin, C. C. Yu, and H. C. Kuo: Semicond. Sci. Technol. 25 (2010) 065007[IoP STACKS].
  26. S. J. Chang, C. F. Shen, W. S. Chen, T. K. Ko, C. T. Kuo, K. H. Yu, S. C. Shei, and Y. Z. Chiou: Electrochem. Solid-State Lett. 10 (2007) H175.
  27. K. M. Uang, S. J. Wang, T. M. Chen, W. C. Lee, S. L. Chen, Y. Y. Wang, and H. Kuan: Jpn. J. Appl. Phys. 48 (2009) 102101[JSAP].
  28. S. Tripathy, S. J. Chua, A. Ramam, E. K. Sia, J. S. Pan, R. Lim, G. Yu, and Z. X. Shen: J. Appl. Phys. 91 (2002) 3398[AIP Scitation].
  29. J. Sun, K. A. Rickert, J. M. Redwing, A. B. Ellis, F. J. Himpsel, and T. F. Kuech: Appl. Phys. Lett. 76 (2000) 415[AIP Scitation].
  30. J.-S. Jang and T.-Y. Seong: J. Appl. Phys. 88 (2000) 3064[AIP Scitation].

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information