Jpn. J. Appl. Phys. 50 (2011) 070119 (4 pages)  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF: FREE (456K)|

Selected Topics in Applied Physics

Technology, Physics, and Modeling of Graphene Devices

Towards Graphene GHz/THz Nanosensor

Akram M. Mahjoub, Shoutaro Motooka, Nobuyuki Aoki, Jungwoo Song1, Jonathan P. Bird1, Yukio Kawano2, David K. Ferry3, Koji Ishibashi2, and Yuichi Ochiai

Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522, Japan
1Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-1920, U.S.A.
2Advanced Device Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
3Department of Electrical Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, AZ 85287-5706, U.S.A.

(Received January 5, 2011; accepted January 6, 2011; published online July 20, 2011)

A quantum dot (QD) sensing device, fabricated from nanoscaled carbon material has been studied using of a bilayer graphene field effect transistor in order to enable its application to the detection of microwave (GHz) and/or terahertz (THz) radiation. Recently, it has been found that there exist several common features in low temperature quantum transport, found in experimental results of conductance quantization in a semiconductor QDs and the magnetoresistance of a graphene QDs. The applicability of a graphene field effect transistor at the GHz/THz range is discussed in terms of the microwave transconductance characteristics up to 40 GHz.

DOI: 10.1143/JJAP.50.070119
PACS: 81.05.ue, 85.30.Tv, 07.07.Df, 73.21.La, 73.50.Td, 73.40.-c

|Full Text PDF: FREE (456K)|  Citation:


  1. T. Ando: Prog. Theor. Phys. Suppl. 176 (2008) 203.
  2. J. W. Song, G. R. Aizin, J. Mikalopas, Y. Kawano, K. Ishibashi, N. Aoki, J. L. Reno, Y. Ochiai, and J. P. Bird: Appl. Phys. Lett. 97 (2010) 083109[AIP Scitation].
  3. J. W. Song, N. A. Kabir, Y. Kawano, K. Ishibashi, G. R. Aizin, L. Mourokh, J. L. Reno, A. G. Markelz, and J. P. Bird: Appl. Phys. Lett. 92 (2008) 223115[AIP Scitation].
  4. J. W. Song, G. R. Aizin, Y. Kawano, K. Ishibashi, N. Aoki, Y. Ochiai, J. L. Reno, and J. P. Bird: Opt. Express 18 (2010) 4609.
  5. D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones: J. Phys. C 21 (1988) L209[IoP STACKS].
  6. S. Russo, J. B. Oostinga, D. Wehenkel, H. B. Heersche, S. Shams Sobhani, L. M. K. Vandersypen, and A. F. Morpurgo: Phys. Rev. B 77 (2008) 085413[APS].
  7. Y. Ujiie, S. Motooka, T. Morimoto, N. Aoki, D. K. Ferry, J. P. Bird, and Y. Ochiai: J. Phys.: Condens. Matter. 21 (2009) 382202[IoP STACKS].
  8. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firosov: Nature 438 (2005) 197[CrossRef].
  9. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim: Nature 438 (2005) 201[CrossRef].
  10. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dobonos, I. V. Grigorieva, and A. A. Firosov: Science 306 (2004) 666[Science].
  11. M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams: Nano Lett. 7 (2007) 1643[CrossRef].

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information