Jpn. J. Appl. Phys. 50 (2011) 080219 (3 pages)  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (482K)| |Buy This Article|

Rapid Communication

Chemically Compatible Sacrificial Layer-Assisted Lift-Off Patterning Method for Fabrication of Organic Light-Emitting Displays

Wonsuk Choi, Min-Hoi Kim, and Sin-Doo Lee

School of Electrical Engineering #32, Seoul National University, Seoul 151-600, Korea

(Received April 4, 2011; accepted June 11, 2011; published online August 5, 2011)

We developed a generic platform to pattern combinatorial functional layers composed of different classes of organic materials using a repetitive lift-off method based on a chemically compatible sacrificial layer (SL) for organic light-emitting diodes (OLEDs). The essential features come from the chemically compatible SL of a fluorous-polymer that can be generated by laser-inscription or transfer-printing. The precise registration of lateral patterns of different materials was achieved on a single substrate through a series of SL-assisted lift-off processes. The chemical compatibility of the SL and the stability of the light-emitting characteristics were shown in a fluorous-solvent treated monochrome OLEDs.

URL: http://jjap.jsap.jp/link?JJAP/50/080219/
DOI: 10.1143/JJAP.50.080219


|Full Text PDF (482K)| |Buy This Article| Citation:


References

  1. C. W. Tang and S. A. VanSlyke: Appl. Phys. Lett. 51 (1987) 913[AIP Scitation].
  2. A. Dodabalapur, Z. Bao, A. Makhija, J. G. Laquindanum, V. R. Raju, Y. Feng, H. E. Katz, and J. A. Rogers: Appl. Phys. Lett. 73 (1998) 142[AIP Scitation].
  3. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo: Nature 459 (2009) 234[CrossRef].
  4. J. Y. Lee and S. T. Lee: Adv. Mater. 16 (2004) 51[CrossRef].
  5. T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm: Appl. Phys. Lett. 72 (1998) 519[AIP Scitation].
  6. M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour: Adv. Mater. 22 (2010) 673[CrossRef].
  7. D. G. Lidzey, M. Voigt, C. Giebeler, A. Buckley, J. Wright, K. Böhlen, J. Fieret, and R. Allott: Org. Electron. 6 (2005) 221.
  8. H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Piqué: J. Phys. D 43 (2010) 085101[IoP STACKS].
  9. J.-H. Choi, K.-H. Kim, S.-J. Choi, and H. H. Lee: Nanotechnology 17 (2006) 2246[IoP STACKS].
  10. H. Jin and J. C. Sturm: SID Int. Symp. Dig. Tech. Pap. 40 (2009) 597.
  11. P. F. Tian, P. E. Burrows, and S. R. Forrest: Appl. Phys. Lett. 71 (1997) 3197[AIP Scitation].
  12. J. A. DeFranco, B. S. Schmidt, M. Lipson, and G. G. Malliaras: Org. Electron. 7 (2006) 22.
  13. A. A. Zakhidov, J.-K. Lee, H. H. Fong, J. A. DeFranco, M. Chatzichristidi, P. G. Taylor, C. K. Ober, and G. G. Malliaras: Adv. Mater. 20 (2008) 3481[CrossRef].
  14. D. C. Duffy, R. J. Jackman, K. M. Vaeth, K. F. Jensen, and G. M. Whitesides: Adv. Mater. 11 (1999) 546[CrossRef].
  15. W. Choi, M.-H. Kim, Y.-J. Na, and S.-D. Lee: Org. Electron. 11 (2010) 2026.
  16. Y.-J. Na, S.-W. Lee, W. Choi, S.-J. Kim, and S.-D. Lee: Adv. Mater. 21 (2009) 537[CrossRef].

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information