Jpn. J. Appl. Phys. 50 (2011) 08LB09 (4 pages)  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (880K)| |Buy This Article|

Structural Dependence of Grain Boundary Resistivity in Copper Nanowires

Tae-Hwan Kim1, Don M. Nicholson2, X.-G. Zhang1,2, Boyd M. Evans3, Nagraj S. Kulkarni3, Edward A. Kenik4, Harry M. Meyer4, Balasubramaniam Radhakrishnan2, and An-Ping Li1

1Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A.
2Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A.
3Measurement Science and Systems Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A.
4Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A.

(Received January 22, 2011; accepted March 24, 2011; published online August 22, 2011)

We report the direct measurement of individual grain boundary (GB) resistances and the critical role of GB structure in the increased resistivity in copper nanowires. By measuring both intra- and inter-grain resistance with a four-probe scanning tunneling microscope, large resistance jumps are revealed owing to successive scattering across high-angle random GBs, while the resistance changes at twin and other coincidence boundaries are negligibly small. The impurity distributions in the nanowires are characterized in correlating to the microstructures. The resistance of high symmetry coincidence GBs and the impurity contributions are then calculated using a first-principle method which confirms that the coincidence GBs have orders of magnitude smaller resistance than the high-angle random GBs.

URL: http://jjap.jsap.jp/link?JJAP/50/08LB09/
DOI: 10.1143/JJAP.50.08LB09


|Full Text PDF (880K)| |Buy This Article| Citation:


References

  1. K.-C. Chen, W.-W. Wu, C.-N. Liao, L.-J. Chen, and K. N. Tu: Science 321 (2008) 1066.
  2. D. Josell, S. H. Brongersma, and Z. Tökei: Annu. Rev. Mater. Res. 39 (2009) 231.
  3. K. Fuchs: Proc. Cambridge Philos. Soc. 34 (1938) 100.
  4. E. H. Sondheimer: Adv. Phys. 1 (1952) 1.
  5. A. F. Mayadas, M. Shatzkes, and J. F. Janak: Appl. Phys. Lett. 14 (1969) 345[AIP Scitation].
  6. A. F. Mayadas and M. Shatzkes: Phys. Rev. B 1 (1970) 1382[APS].
  7. J. M. Camacho and A. I. Oliva: Thin Solid Films 515 (2006) 1881[CrossRef].
  8. Q. G. Zhang, B. Y. Cao, X. Zhang, M. Fujii, and K. Takahashi: Phys. Rev. B 74 (2006) 134109[APS].
  9. Y. Ke, F. Zahid, V. Timoshevskii, K. Xia, D. Gall, and H. Guo: Phys. Rev. B 79 (2009) 155406[APS].
  10. R. L. Graham, G. B. Alers, T. Mountsier, N. Shamma, S. Dhuey, S. Cabrini, R. H. Geiss, D. T. Read, and S. Peddeti: Appl. Phys. Lett. 96 (2010) 042116[AIP Scitation].
  11. T. Sun, B. Yao, A. P. Warren, K. Barmak, M. F. Toney, R. E. Peale, and K. R. Coffey: Phys. Rev. B 81 (2010) 155454[APS].
  12. Y. Kitaoka, T. Tono, S. Yoshimoto, T. Hirahara, S. Hasegawa, and T. Ohba: Appl. Phys. Lett. 95 (2009) 052110[AIP Scitation].
  13. B. Feldman, R. Deng, and S. T. Dunham: J. Appl. Phys. 103 (2008) 113715[AIP Scitation].
  14. B. Feldman, S. Park, M. Haverty, S. Shankar, and S. T. Dunham: Phys. Status Solidi B 247 (2010) 1791[CrossRef].
  15. X. G. Zhang, K. Varga, and S. T. Pantelides: Phys. Rev. B 76 (2007) 035108[APS].
  16. T.-H. Kim, X. G. Zhang, D. M. Nicholson, B. M. Evans, N. S. Kulkarni, B. Radhakrishnan, E. A. Kenik, and A.-P. Li: Nano Lett. 10 (2010) 3096[CrossRef].
  17. T.-H. Kim, J. F. Wendelken, A.-P. Li, G. Du, and W. Li: Nanotechnology 19 (2008) 485201[IoP STACKS].
  18. T.-H. Kim, M. Angst, B. Hu, R. Jin, X. G. Zhang, J. F. Wendelken, E. W. Plummer, and A. P. Li: Proc. Natl. Acad. Sci. U.S.A. 107 (2010) 5272.
  19. N. S. Kulkarni, B. M. Evans, T.-H. Kim, A. P. Li, E. A. Kenik, and D. M. Nicholson: Proc. 25th Advanced Metallization Conf., 2009, p. 269.
  20. T. Nemoto, T. Fukino, S. Tsurekawa, X. Gu, A. Teramoto, and T. Ohmi: Jpn. J. Appl. Phys. 48 (2009) 066507[JSAP].
  21. T.-H. Kim, Z. Wang, J. F. Wendelken, H. H. Weitering, W. Li, and A.-P. Li: Rev. Sci. Instrum. 78 (2007) 123701[AIP Scitation].
  22. R. Hobara, N. Nagamura, S. Hasegawa, I. Matsuda, Y. Yamamoto, Y. Miyatake, and T. Nagamura: Rev. Sci. Instrum. 78 (2007) 053705[AIP Scitation].
  23. J. M. MacLaren, S. Crampin, D. D. Vvedensky, and J. B. Pendry: Phys. Rev. B 40 (1989) 12164[APS].
  24. J. M. MacLaren, X. G. Zhang, W. H. Butler, and X. Wang: Phys. Rev. B 59 (1999) 5470[APS].
  25. W. H. Butler, X. G. Zhang, and J. M. MacLaren: J. Supercond. 13 (2000) 221.
  26. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu: Science 304 (2004) 422[Science].

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information