Jpn. J. Appl. Phys. 50 (2011) 091603 (4 pages)  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (562K)| |Buy This Article|

n-Channel Organic Thin-Film Transistors based on Naphthalene–Bis(dicarboximide) Polymer for Organic Transistor Memory Using Hole-Acceptor Layer

Khairul Anuar Mohamad1,2, Kakuta Yousuke3, Katsuhiro Uesugi3, and Hisashi Fukuda3

1School of Engineering and Information Technology, Universiti Malaysia Sabah, Locked Bag 2073, Kota Kinabalu, Sabah 88999, Malaysia
2Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585, Japan
3Department of Information and Electronic Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585, Japan

(Received June 1, 2011; revised June 24, 2011; accepted June 29, 2011; published online September 20, 2011)

An investigation of threshold voltage shifts in organic thin-film transistors (OTFTs) based on poly[N,N '-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene) [P(NDI2OD-T2)] with additional poly(3-hexylthiophene) (P3HT) films on a poly(methyl methacrylate) (PMMA) organic dielectric layer is reported. With a top source-drain contact structure, the device exhibited a unipolar property with n-channel characteristics similar to those of the P(NDI2OD-T2)-only device. Furthermore, the existence of P3HT films as hole acceptor-like storage layers resulted in reversible Vth shift upon the application of external gate bias (Vbias) for a certain bias time (Tbias). Hence, the P(NDI2OD-T2)/P3HT-OTFTs exhibited a large memory window (ΔVth = 10.7 V) for write and erase electrically without major degradation in saturation mobility [µsat = (1.8–2.8) ×10-4 cm2 V-1 s-1]. These results clearly indicate the utility of the naphthalene–bis(dicarboximide) (NDI)-based polymer–hole acceptor layer in the development of n-channel organic transistor memories.

DOI: 10.1143/JJAP.50.091603
PACS: 85.30.Tv, 73.61.Ph, 84.30.Sk

|Full Text PDF (562K)| |Buy This Article| Citation:

References | Citing Articles (3)

  1. H. Inokuchi: Org. Electron. 7 (2006) 62.
  2. A. C. Hubler, G. C. Schmidt, H. Kempa, K. Reuter, M. Hambsch, and M. Bellmann: Org. Electron. 12 (2011) 419.
  3. M. A. McCarthy, B. Liu, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, and A. G. Rinzler: Science 332 (2011) 570.
  4. G. Darlinski, U. Bottger, R. Wasser, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and C. Dehm: J. Appl. Phys. 97 (2005) 093708[AIP Scitation].
  5. Th. B. Singh, N. Marjanovic, G. J. Matt, N. S. Sariciftci, R. Schwodiauer, and S. Bauer: Appl. Phys. Lett. 85 (2004) 5409[AIP Scitation].
  6. Z. Bao: Adv. Mater. 12 (2000) 227[CrossRef].
  7. E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. Van Veenendaal, B.-H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, and T. M. Klapwijk: Nat. Mater. 2 (2003) 678.
  8. T. D. Anthopoulos, D. M. de Leeuw, E. Cantatore, P. van't Hof, J. Alma, and J. C. Hummelen: J. Appl. Phys. 98 (2005) 054503[AIP Scitation].
  9. H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y.-Y. Lin, and A. Dodabalapur: Nature 404 (2000) 478[CrossRef].
  10. Th. B. Singh, S. Erten, S. Gunes, C. Zafer, G. Turkmen, B. Kuban, Y. Teoman, N. S. Sariciftci, and S. Icli: Org. Electron. 7 (2006) 480.
  11. J. H. Oh, S. Liu, Z. Bao, R. Schmidt, and F. Wurthner: Appl. Phys. Lett. 91 (2007) 212107[AIP Scitation].
  12. H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, and A. Facchetti: Nature 457 (2009) 679[CrossRef].
  13. F. Wurthner and M. Stolte: Chem. Commun. 47 (2011) 5109.
  14. S. H. Kim, S. H. Lee, and J. Jang: IEEE. Electron Device Lett. 31 (2010) 1044[CrossRef].
  15. W. L. Leong, N. Mathews, S. Mhaisalkar, Y. M. Lam, T. Chen, and P. S. Lee: J. Mater. Chem. 19 (2009) 7354.
  16. K. Szendrei, D. Jarzab, Z. Chen, A. Facchetti, and M. A. Loi: J. Mater. Chem. 20 (2010) 1317.
  17. S. M. Sze: Physics of Semiconductor Devices (Wiley, New York, 1981) 2nd ed., p. 440.
  18. H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber: J. Appl. Phys. 92 (2002) 5259[AIP Scitation].
  19. S. Scheinert, G. Paasch, M. Scrodner, H.-K. Roth, S. Sensfus, and Th. Doll: J. Appl. Phys. 92 (2002) 330[AIP Scitation].
  20. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan: Appl. Phys. Lett. 68 (1996) 1377[AIP Scitation].
  21. K. A. Mohamad, K. Uesugi, and H. Fukuda: Jpn. J. Appl. Phys. 50 (2011) 01BC04[JSAP].
  22. K.-J. Baeg, D. Khim, D.-Y. Kim, S.-W. Jung, J. B. Koo, and Y.-Y. Noh: Jpn. J. Appl. Phys. 49 (2010) 05EB01[JSAP].
  23. K. A. Mohamad, S. Yamada, K. Uesugi, and H. Fukuda: e-J. Surf. Sci. Nanotechnol. 7 (2009) 808.

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information