Jpn. J. Appl. Phys. 50 (2011) 101503 (7 pages)  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (295K)| |Buy This Article|

Estimation of Piezoelectric Response Using Maximally Localized Wannier Function and Its Application to the Bismuth-Based Ferroelectric Materials

Yukihiro Okuno and Yukio Sakashita

Research and Development Management Headquarters, FUJIFILM Corporation, Minamiashigara, Kanagawa 250-0193, Japan

(Received May 9, 2011; accepted June 26, 2011; published online October 20, 2011)

Estimation of piezoelectric coefficient using maximally localized Wannier function (MLWF) is performed for several ferroelectric materials. The advantage of this method is that we can decompose the piezoelectric coefficient into each orbital of MLWF and can obtain physical information on the piezoelectric response from the viewpoint of electric structure. We divide the piezoelectric coefficient into the “electric” and “ionic” parts. For the electric part, we further divide it into each MLWF orbital contribution. We have applied this method to BaTiO3, PbTiO3, and the bismuth-based ferroelectric materials BiAlO3 and BiFeO3. We show the detailed characteristics of the piezoelectric response in these materials.

DOI: 10.1143/JJAP.50.101503

|Full Text PDF (295K)| |Buy This Article| Citation:


  1. K. Uchino: Piezoelectric Actuators and Ultorasonic Motors (Kluwer Academic, Boston, MA, 1996).
  2. G. Szabo, R. E. Cohen, and H. Krakauer: Phys. Rev. Lett. 80 (1998) 4321[APS].
  3. Y. Okuno, K. Kawato, M. Suzuki, A. Harada, and T. Oguchi: Jpn. J. Appl. Phys. 46 (2007) 5199[JSAP].
  4. R. D. King-Smith and D. Vanderbilt: Phys. Rev. B 47 (1993) 1651[APS](R).
  5. Y. Noel, C. M. Zicovich-Wilson, B. Civalleri, Ph. D'Arco, and R. Dovesi: Phys. Rev. B 65 (2001) 014111[APS].
  6. N. Marzari and D. Vanderbilt: Phys. Rev. B 56 (1997) 12847[APS].
  7. R. E. Cohen: Nature (London) 358 (1992) 136[CrossRef].
  8. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh: Science 299 (2003) 1719[Science].
  9. A. A. Belik, M. Takano, M. V. Boguslavsky, S. Y. Stefanovich, and B. I. Lazoryak: Chem. Mater. 18 (2006) 133.
  10. A. A. Belik, S. Y. Stefanovich, B. I. Lazoryak, and E. Takayama-Muromachi: Chem. Mater. 18 (2006) 1964.
  11. S. Niitaka, M. Azuma, M. Takano, E. Nishibori, M. Takata, and M. Sakata: Solid State Ionics 172 (2004) 557.
  12. P. Ravindran, R. Vidya, A. Kjekshus, and H. Fjellvag: Phys. Rev. B 74 (2006) 224412[APS].
  13. H. Wang, B. Wang, Q. Li, Z. Zhu, R. Wang, and C. H. Woo: Phys. Rev. B 75 (2007) 245209[APS].
  14. Y. Okuno and Y. Sakashita: Jpn. J. Appl. Phys. 48 (2009) 09KF04[JSAP].
  15. Y. Okuno and Y. Sakashita: Jpn. J. Appl. Phys. 49 (2010) 09ME08[JSAP].
  16. W. Zhong, R. D. King-Smith, and D. Vanderbilt: Phys. Rev. Lett. 72 (1994) 3618[APS].
  17. S. Baroni, A. D. Corso, S. de Gironcoli, P. Giannozzi, C. Cavazzoni, G. Ballabio, S. Scandolo, G. Chiarotti, P. Focher, A. Pasquarello, K. Laasonen, A. Trave, R. Car, N. Marzari, and A. Kokalj: QUANTUM-ESPRESSO package 2005 [].
  18. A. A. Mostofi, J. R. Yates, Y. S. Lee, I. Souza, D. Vanderbilt, and N. Marzari: Comput. Phys. Commun. 178 (2008) 685[CrossRef].
  19. N. Marzari and D. Vanderbilt: cond-mat/9802210[e-print arXiv].
  20. Ph. Ghosez, X. Gonze, Ph. Lambin, and J.-P. Michenaud: Phys. Rev. B 51 (1995) 6765[APS].
  21. J. Bhattachargee and U. V. Waghmare: cond-mat/0811[e-print arXiv].2039v1.

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information