Jpn. J. Appl. Phys. 51 (2012) 010002 (5 pages)  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF: FREE (439K)|

Comprehensive Review

Forefront in the Elucidation of the Mechanism of High-Temperature Superconductivity

Shin-ichi Uchida

Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan

(Received August 4, 2011; accepted September 8, 2011; published online December 7, 2011)

The mechanism underlying the high-temperature (Tc) superconductivity of copper oxides has remained unelucidated and is one of the most difficult challenges of physics remaining in the 21st century. Various types of advanced spectroscopy have been employed to clarify the mechanism, resulting in the advancement of these techniques. Although the mechanism has not yet been completely clarified, the pseudogap phase, which always accompanies a superconducting phase, is now being considered as an electron state that plays a key role in the clarification of superconductivity.

DOI: 10.1143/JJAP.51.010002

|Full Text PDF: FREE (439K)|  Citation:

References | Citing Articles

  1. P. W. Anderson, P. A. Lee, M. Randeria, N. Trivedi, and F. C. Zhang: J. Phys.: Condens. Matter 16 (2004) R755[IoP STACKS].
  2. Unlike s-wave superconductivity, 1) d-wave superconductivity is susceptible to pair breaking in the presence of nonmagnetic impurity scattering, 2) a low superfluid density increases the quantum phase fluctuation, and 3) the thermodynamic fluctuation is significant in a two-dimensional system (because the entropy term dominates in free energy); thus, the formation of order at finite temperatures is prevented.
  3. J. Orenstein and A. J. Millis: Science 288 (2000) 468[Science].
  4. M. L. Tacon, A. Sacuto, A. Georges, G. Kotliar, Y. Gallais, D. Colson, and A. Forget: Nat. Phys. 2 (2006) 537.
  5. S. H. Pan, J. P. O'Neal, R. L. Badzey, C. Chamon, H. Ding, J. R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A. K. Gupta, K.-W. Ng, E. W. Hudson, K. M. Lang, and J. C. Davis: Nature 413 (2001) 282[CrossRef].
  6. Y. Kohsaka, C. Taylor, P. Wahl, A. Schmidt, J. Lee, K. Fujita, J. W. Alldredge, K. McElroy, J. Lee, H. Eisaki, S. Uchida, D.-H. Lee, and J. C. Davis: Nature 454 (2008) 1072[CrossRef].
  7. Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis: Science 315 (2007) 1380[Science].
  8. V. Hinkov, D. Haug, B. Fauque, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C. T. Lin, and B. Keimer: Science 319 (2008) 597.
  9. R. Daou, J. Chang, D. LeBoeuf, O. Cyr-Choinière, F. Laliberté, N. Doiron-Leyraud, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer: Nature 463 (2010) 519[CrossRef].
  10. Y. Li, V. Balédent, N. Barišić, Y. Cho, B. Fauqué, Y. Sidis, G. Yu, X. Zhao, P. Bourges, and M. Greven: Nature 455 (2008) 372[CrossRef].
  11. C. M. Varma: Phys. Rev. B 73 (2006) 155113[APS].
  12. M. J. Lawler, K. Fujita, J. Lee, A. R. Schmidt, Y. Kohsaka, C. K. Kim, H. Eisaki, S. Uchida, J. C. Davis, J. P. Sethna, and E.-A. Kim: Nature 466 (2010) 347[CrossRef].
  13. Q. Li, M. Hüecker, G. D. Gu, A. M. Tsvelik, and J. M. Tranquada: Phys. Rev. Lett. 99 (2007) 067001[APS].
  14. R.-H. He, K. Tanaka, S.-K. Mo, T. Sasagawa, M. Fujita, T. Adachi, N. Mannella, K. Yamada, Y. Koike, Z. Hussain, and Z.-X. Shen: Nat. Phys. 5 (2009) 119.
  15. Y. Wang, L. Li, and N. P. Ong: Phys. Rev. B 73 (2006) 024510[APS].
  16. J. Lee, K. Fujita, A. R. Schmidt, C.-K. Kim, H. Eisaki, S. Uchida, and J. C. Davis: Science 325 (2009) 1099.
  17. S. Ideta, K. Takashima, M. Hashimoto, T. Yoshida, A. Fujimori, H. Anzai, T. Fujita, Y. Nakashima, A. Ino, M. Arita, H. Namatame, M. Taniguchi, K. Ono, M. Kubota, D. H. Lu, Z.-X. Shen, K. M. Kojima, and S. Uchida: Phys. Rev. Lett. 104 (2010) 227001[APS].
  18. S. Sachdev: Science 288 (2000) 475[Science].
  19. Y. J. Uemura: J. Phys.: Condens. Matter 16 (2004) S4515[IoP STACKS].

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information