Jpn. J. Appl. Phys. 51 (2012) 10NE25 (4 pages)  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF: FREE (291K)|

Integration of Surfactant-Free Silicon Nanocrystal in Hybrid Solar Cells

Vladimir Svrcek1, Davide Mariotti2, Toshimi Yamanari1, Koiji Matsubara1, and Michio Kondo1

1Research Center for Photovoltaic Technologies, AIST, Tsukuba, Ibaraki 305-8568, Japan
2Nanotechnology & Integrated Bio-Engineering Research Centre, University of Ulster at Jordanstown, Newtownabbey, Co Antrim, BT37 OQB, U.K.

(Received December 14, 2011; accepted February 8, 2012; published online October 22, 2012)

Here, we discuss the results related to improvement of electronic interactions and structural properties of hybrid organic/inorganic composites based on free-standing and surfactant-free silicon nanocrystals (Si-ncs). Performance of Si-ncs in bulk-heterojunction solar cells combined with a polythieno[3,4-b]thiophenebenzodithiophene (PTB7) is studied. Further we demonstrate that three dimensional surface engineering of Si-ncs by low-cost and room temperature DC atmospheric microplasma processing in ethanol considerably enhance the Si-ncs electronic interactions with polymers and enhance the overall external quantum efficiency conversion of bulk heterojunction solar cells without using any surfactant.

DOI: 10.1143/JJAP.51.10NE25

|Full Text PDF: FREE (291K)|  Citation:


  1. D. J. Milliron, I. Gur, and A. P. Alivisatos: Mater. Res. Soc. Bull. 30 (2005) 41.
  2. S. Günes, H. Neugebauer, and N. S. Sariciftci: Chem. Rev. 107 (2007) 1324.
  3. A. J. Nozik: Chem. Phys. Lett. 457 (2008) 3[CrossRef].
  4. V. Švrček, T. Yamanari, Y. Shibata, and M. Kondo: Acta Mater. 59 (2011) 764.
  5. Ch. Y. Liu, Z. C. Holman, and U. R. Kortshagen: Nano Lett. 9 (2009) 449[CrossRef].
  6. V. Švrček, D. Mariotti, T. Nagai, Y. Shibata, I. Turkevych, and M. Kondo: J. Phys. Chem. C 115 (2011) 5084[CrossRef].
  7. V. Švrček, D. Mariotti, and M. Kondo: Appl. Phys. Lett. 97 (2010) 161502[AIP Scitation].
  8. Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu: Adv. Mater. 22 (2010) E135.
  9. D. König, J. Rudd, M. A. Green, and G. Conibeer: Phys. Rev. B 78 (2008) 035339[APS].
  10. M. Brinkmann and P. Rannou: Adv. Funct. Mater. 17 (2007) 101.
  11. R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, and J. M. J. Frechet: Adv. Mater. 15 (2003) 1519[CrossRef].
  12. A. Zen, J. Pflaum, S. Hirschmann, W. Zhuang, F. Jaiser, U. Asawapirom, P. Rabe, U. Scherf, and D. Neher: Adv. Funct. Mater. 14 (2004) 757.
  13. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu: Adv. Mater. 22 (2010) E135.
  14. A. J. Mozer and N. S. Sariciftci: Chem. Phys. Lett. 389 (2004) 438[CrossRef].
  15. J. C. Guo, Y. Y. Liang, J. M. Szarko, B. D. Lee, H. H. Son, B. Rolczynski, L. P. Yu, and L. X. Chen: J. Phys. Chem. B 114 (2010) 742[CrossRef].
  16. K. M. Coakley, B. S. Srinivasan, J. M. Ziebarth, C. Goh, Y. Liu, and M. D. McGehee: Adv. Funct. Mater. 15 (2005) 1927.
  17. M. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. Brabec: Adv. Mater. 18 (2006) 789[CrossRef].
  18. G. Li, Y. Yao, H. C. Yang, V. Shrotriya, G. W. Yang, and Y. Yang: Adv. Funct. Mater. 17 (2007) 1636.
  19. S. Antohe, N. Tomozeiu, and S. Gogonea: Phys. Status Solidi A 125 (1991) 397[CrossRef].
  20. S. R. Forrest, M. L. Kaplan, and P. H. Schmidt: J. Appl. Phys. 55 (1984) 1492[AIP Scitation].
  21. Y. Liang and L. Yu: Acc. Chem. Res. 43 (2010) 1227.
  22. C. T. Chan, S. G. Louie, and J. C. Phillips: Phys. Rev. B 35 (1987) 2744[APS].

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information