Jpn. J. Appl. Phys. 52 (2013) 107301 (8 pages)  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (1108K)| |Buy This Article|

Inductively Coupled Plasma Mass Spectrometry Study on the Increase in the Amount of Pr Atoms for Cs-Ion-Implanted Pd/CaO Multilayer Complex with Deuterium Permeation

Tatsumi Hioki1, Naoko Takahashi1, Satoru Kosaka1, Teppei Nishi1, Hirozumi Azuma1, Shogo Hibi1, Yuki Higuchi1, Atsushi Murase1, and Tomoyoshi Motohiro2

1Toyota Central Research and Development Laboratories, Inc., Nagakute, Aichi 480-1192, Japan
2Green Mobility Collaborative Research Center and Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan

(Received March 6, 2013; accepted August 5, 2013; published online October 4, 2013)

To investigate the nuclear transmutation of Cs into Pr reported in this journal by Iwamura and coworkers, we have measured the amount of Pr atoms in the range as low as ∼1×1010 cm-2 using inductively coupled plasma mass spectrometry for Cs-ion-implanted Pd/CaO multilayer complexes before and after deuterium permeation. The amount of Pr was initially at most 2.0×1011 cm-2 and it increased up to 1.6×1012 cm-2 after deuterium permeation. The increase in the amount of Pr could be explained neither by deuterium permeation-stimulated segregation of Pr impurities nor by external contamination from the experimental environment during the permeation. No increase in Pr was observed for permeation with hydrogen. These findings suggest that the observed increase in Pr with deuterium permeation can be attributed to a nuclear origin, as reported by Iwamura and coworkers, although the amount of the increase in Pr is two orders of magnitude less than that reported by them.

URL: http://jjap.jsap.jp/link?JJAP/52/107301/
DOI: 10.7567/JJAP.52.107301


|Full Text PDF (1108K)| |Buy This Article| Citation:


References

  1. Y. Iwamura, M. Sakano, and T. Itoh: Jpn. J. Appl. Phys. 41 (2002) 4642[JSAP].
  2. Y. Iwamura, T. Itoh, M. Sakano, S. Sakai, and S. Kuribayashi: in Condensed Matter Nuclear Science, ed. P. I. Hagelstein and S. R. Chubb (World Scientific, Singapore, 2003) p. 435.
  3. Y. Iwamura, T. Itoh, M. Sakano, N. Yamazaki, S. Kuribayashi, Y. Terada, T. Ishikawa, and J. Kasagi: in Condensed Matter Nuclear Science, ed. J. P. Biberian (World Scientific, Singapore, 2004) p. 339.
  4. Y. Iwamura, T. Itoh, M. Sakano, N. Yamazaki, S. Kuribayashi, Y. Terada, and T. Ishikawa: in Condensed Matter Nuclear Science, ed. A. Takahashi, K. Ota, and Y. Iwamura (World Scientific, Singapore, 2006) p. 178.
  5. T. Higashiyama, H. Miyamaru, A. Takahashi, and M. Sakano: in Condensed Matter Nuclear Science, ed. P. I. Hagelstein and S. R. Chubb (World Scientific, Singapore, 2003) p. 447.
  6. F. Celani, A. Spallone, E. Righi, G. Trenta, C. Catena, G. D'Agostaro, P. Quercia, V. Andreassi, P. Marini, V. Stefano, M. Nakamura, A. Mancini, P. G. Sona, F. Fontana, L. Gamberale, D. Garbelli, F. Falcioni, M. Marchesini, E. Novaro, and U. Masteromatteo: in Condensed Matter Nuclear Science, ed. P. I. Hagelstein and S. R. Chubb (World Scientific, Singapore, 2003) p. 379.
  7. A. Kitamura, R. Nishino, H. Iwai, R. Satoh, A. Taniike, and Y. Furuyama: in Condensed Matter Nuclear Science, ed. A. Takahashi, K. Ota, and Y. Iwamura (World Scientific, Singapore, 2006) p. 272.
  8. H. Yamada, S. Narita, S. Taniguchi, T. Ushinozawa, S. Kurihara, M. Higashizawa, H. Sawada, M. Inagaki, and T. Odashima: in Condensed Matter Nuclear Science, ed. A. Takahashi, K. Ota, and Y. Iwamura (World Scientific, Singapore, 2006) p. 196.
  9. T. Hioki, N. Takahashi, and T. Motohiro: Proc. 13th Int. Conf. Condensed Matter Nuclear Science, 2007, p. 518.
  10. Y. Yamaguti, Y. Sasaki, T. Nohmi, A. Taniike, Y. Furuyama, A. Kitamura, and A. Takahashi: Proc. 14th Int. Conf. Condensed Matter Nuclear Science, 2008, p. 195.
  11. T. Hioki, J. Gao, N. Takahashi, S. Hibi, A. Murase, T. Motohiro, and J. Kasagi: Proc. 14th Int. Conf. Condensed Matter Nuclear Science, 2008, p. 203.
  12. K. Grabowski, D. Kidwell, C. Cetina, and C. Carosella: Abstr. 15th Int. Conf. Condens. Matter Nuclear Science, 2009, p. 34.
  13. A. Murase, N. Takahashi, S. Hibi, T. Hioki, T. Motohiro, and J. Kasagi: J. Condens. Matter Nucl. Sci. 6 (2012) 34.
  14. T. Hioki, N. Takahahi, J. Gao, A. Murase, S. Hibi, and T. Motohiro: J. Condens. Matter Nucl. Sci. 6 (2012) 64.
  15. J. S. Gao, T. Hioki, N. Takahashi, and T. Motohiro: J. Vac. Sci. Technol. A 28 (2010) 147[AIP Scitation].
  16. J. P. Biersack and L. G. Haggmark: Nucl. Instrum. Methods 174 (1980) 257.
  17. R. G. Musket: J. Less-Common Met. 45 (1976) 173.
  18. K. Yamakawa, M. Ege, B. Ludescher, and M. Hirscher: J. Alloys Compd. 352 (2003) 57.
  19. K. Yamakawa, M. Ege, M. Hirscher, B. Ludescher, and H. Kronmüller: J. Alloys Compd. 393 (2005) 5.
  20. S. Wilke and M. Scheffler: Surf. Sci. 329 (1995) L605[CrossRef].
  21. I. Szymerska and M. Lipski: J. Catal. 41 (1976) 197.
  22. I. Szymerska and M. Lipski: J. Catal. 47 (1977) 144.
  23. M. Yamawaki, T. Namba, T. Kiyoshi, T. Yoneoka, and M. Kanno: J. Nucl. Mater. 133–134 (1985) 292.
  24. O. G. Romanenko, V. P. Shestakov, and I. L. Tazhibaeva: Phys. Rev. B 61 (2000) 4934[APS].
  25. R. V. Kotelva and J. L. Glukhova: Int. J. Hydrogen Energy 22 (1997) 175.
  26. T. Yamazaki, M. Sato, and S. Itoh: Proc. Jpn. Acad., Ser. B 85 (2009) 183.
  27. A. Kawasaki, S. Itoh, K. Shima, and T. Yamazaki: Mater. Sci. Eng. A 551 (2012) 231.
  28. H. Yuki, T. Sato, T. Ohtsuki, T. Yorita, Y. Aoki, H. Yamazaki, J. Kasagi, and K. Ishii: J. Phys. Soc. Jpn. 66 (1997) 73.
  29. J. Kasagi, H. Yuki, T. Baba, T. Noda, T. Ohtsuki, and A. G. Lipson: J. Phys. Soc. Jpn. 71 (2002) 2881.
  30. F. Raiola, L. Gang, C. Bonomo, G. Gyürky, M. Aliotta, H. W. Becker, R. Bonetti, C. Broggini, P. Corvisiero, A. D'Onofrio, Z. Fülüp, G. Gervino, L. Gialanella, M. Junker, P. Prati, V. Roca, C. Rolfs, M. Romano, E. Somorjai, F. Strieder, F. Terrasi, G. Fiorentini, K. Langanke, and J. Winter: Eur. Phys. J. A 19 (2004) 283.
  31. J. Kasagi, H. Yuki, T. Baba, T. Noda, J. Taguchi, M. Shimokawa, and W. Galster: J. Phys. Soc. Jpn. 73 (2004) 608.
  32. K. Czerski, A. Huke, A. Biller, P. Heide, M. Hoeft, and G. Ruprecht: Europhys. Lett. 54 (2001) 449[CrossRef].
  33. F. Raiola, B. Burchard, Z. Fülüp, G. Gyürky, S. Zeng, J. Cruz, A. Di Leva, B. Limata, M. Fonseca, H. Luis, M. Aliotta, H. W. Becker, C. Broggini, A. D'Onofrio, L. Gialanella, G. Imbriani, A. P. Jesus, M. Junker, J. P. Ribeiro, V. Roca, C. Rolfs, M. Romano, E. Somorjai, F. Strieder, and F. Terrasi: Eur. Phys. J. A 27 (2006) 79[CrossRef].
  34. K. Fang, T. Wang, H. Yonemura, A. Nakagawa, T. Sugawara, and J. Kasagi: J. Phys. Soc. Jpn. 80 (2011) 084201.
  35. Y. Toriyabe, E. Yoshida, J. Kasagi, and M. Fukuhara: Phys. Rev. C 85 (2012) 054620[APS].
  36. A. Takahashi: J. Condens. Matter Nucl. Sci. 1 (2007) 129.
  37. M. Fukuhara: Jpn. J. Appl. Phys. 46 (2007) 3035[JSAP].
  38. Y. E. Kim: Naturwissenschaften 96 (2009) 803.

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |JJAP Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information